The Ancient Indus Civilization in India Adaptation to Climate Change

New research methods and technologies are able to shed light on climate patterns that took place thousands of years ago, giving us a new perspective on how cultures of the time coped with variable and changing environments.

A new article in the February issue of Current Anthropology explores the dynamics of adaptation and resilience in the face of a diverse and varied environmental context, using the case study of South Asia’s Indus Civilization (c.3000-1300 BC). Integrating research carried out as part of the Land, Water and Settlement project—part of an ongoing collaboration between the University of Cambridge and Banaras Hindu University—that worked in northwest India between 2007 and 2014, the article looks at how Indus populations in north-west India interacted with their environment, and considers how that environment changed during periods of climate change.

Lead author, Dr. Cameron Petrie of the Division of Archaeology, University of Cambridge notes that “for most ancient complex societies, water was a critical factor, and the availability of water and the way that it was managed and used provide critical insight into human adaptation and the resilience of subsistence practices”.

Most early complex societies developed in regions where the climatic parameters faced by ancient subsistence farmers were varied, but not especially diverse. The Indus Civilization developed in a specific environmental context, where the winter and summer rainfall systems overlapped. There is now evidence to show that this region was subject to climate change during the period when the Indus Civilization was at its height (c.2500-1900 BC). The Indus Civilization therefore provides a unique opportunity to understand how an ancient society coped with diverse and varied ecologies and change in the fundamental and underlying environmental parameters.

In the early Holocene, the Indus Civilization was situated in proximity to Kotla Dahar, a deep lake, implying regular and consistent rainfall input to offset evaporation, which given its location, would have been primarily monsoonal. The lake showed evidence for two dramatic decreases in monsoon rainfall and a progressive lowering of the lake level. The second of these shows Kotla Dahar becoming completely ephemeral ca. 2200-2000 BC as a result of an abrupt weakening of the monsoon, and the weakening of the monsoon is visible in speleothem records in Oman and northeast India. The proximity of the Kotla Dahar record to the area occupied by Indus populations shows that climate must be formally considered as a contributing parameter in the process of Indus deurbanization, at least in the context of the plains of northwest India.

It has long been hypothesized that there was variation in the subsistence practices used by Indus populations and this fits with the theme of coping with diverse environments. Petrie comments that “we argue that rather than being forced to intensify or diversify subsistence practices in response to climatic change, we have evidence for the use of millet, rice, and tropical pulses in the pre-urban and urban phases of the Indus Civilization. This evidence suggests that local Indus populations were already well adapted to living in varied and variable environmental conditions before the development of urban centers. It is also possible that these adaptations were beneficial when these populations were faced with changes to the local environment that were probably beyond the range of variation that they typically encountered”.

NASA Increases Study On Cosmic Rays Effect On Commercial Flights

NASA scientists studying high-altitude radiation recently published new results on the effects of cosmic radiation in our atmosphere. Their research will help improve real-time radiation monitoring for aviation industry crew and passengers working in potentially higher radiation environments.

Cosmic radiation is caused by high-energy particles that continually shower down from space. Most of these energetic particles come from outside the solar system, though the Sun is an important source during solar storms.

Earth’s magnetosphere, which acts as a giant magnetic shield, blocks most of the radiation from ever reaching the planet. Particles with sufficient energy, however, can penetrate both Earth’s magnetosphere and atmosphere, where they collide with molecules of nitrogen and oxygen. These collisions cause the high-energy particles to decay into different particles through processes known as nucleonic and electromagnetic cascades.

“The measurements, for the first time, were taken at seven different altitudes, where the physics of dosimetry is very different,” said Chris Mertens, principal investigator of the RaD-X mission at NASA’s Langley Research Center in Hampton, Virginia. “By having the measurements at these seven altitudes we’re really able to test how well our models capture the physics of cosmic radiation.”

If you could see the particles from the airplane window, you would notice them clustering in a region above the plane. The density of the atmosphere causes the decay to happen predominantly at a height of 60,000 feet, which creates a concentrated layer of radiation particles known as the Pfotzer maximum.

The RaD-X mission took high-altitude measurements, few of which previously existed, to better understand how cosmic radiation moves through Earth’s atmosphere. The results from RaD-X will be used to improve space weather models, like the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety, or NAIRAS, model, which predicts radiation events. These predictions are used by commercial pilots to know when and where radiation levels are unsafe, allowing rerouting of aircraft in the affected region when necessary.

Because of their time spent in Earth’s upper atmosphere, aircrew in the aviation industry are exposed to nearly double the radiation levels of ground-based individuals. Exposure to cosmic radiation is also a concern for crew aboard the International Space Station and future astronauts journeying to Mars, which has a radiation environment similar to Earth’s upper atmosphere. Learning how to protect humans from radiation exposure is a key step in future space exploration.

The flight mission tested two new instruments – the RaySure detector and the Teledyne TID detector – in hope that they can be installed on commercial aircraft in the future. These new instruments offer the advantage of being compact and easily produced. During RaD-X mission testing, both instruments were found to be promising candidates for future real-time, in situ monitoring.

New Space Weather Model Helps Simulate Magnetic Structure of Solar Storms

The dynamic space environment that surrounds Earth – the space our astronauts and spacecraft travel through – can be rattled by huge solar eruptions from the Sun, which spew giant clouds of magnetic energy and plasma, a hot gas of electrically charged particles, out into space. The magnetic field of these solar eruptions are difficult to predict and can interact with Earth’s magnetic fields, causing space weather effects.

VIDEO – CLICK HERE

A new tool called EEGGL – short for the Eruptive Event Generator (Gibson and Low) and pronounced “eagle” – helps map out the paths of these magnetically structured clouds, called coronal mass ejections or CMEs, before they reach Earth. EEGGL is part of a much larger new model of the corona, the Sun’s outer atmosphere, and interplanetary space, developed by a team at the University of Michigan. Built to simulate solar storms, EEGGL helps NASA study how a CME might travel through space to Earth and what magnetic configuration it will have when it arrives. The model is hosted by the Community Coordinated Modeling Center, or CCMC, at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The new model is known as a “first principles” model because its calculations are based on the fundamental physics theory that describes the event – in this case, the plasma properties and magnetic free energy, or electromagnetics, guiding a CME’s movement through space.

Such computer models can help researchers better understand how the Sun will affect near-Earth space, and potentially improve our ability to predict space weather, as is done by the U.S. National Oceanic and Atmospheric Administration.

Taking into account the magnetic structure of a CME from its initiation at the Sun could mark a big step in CME modeling; various other models initiate CMEs solely based on the kinematic properties, that is, the mass and initial velocity inferred from spacecraft observations. Incorporating the magnetic properties at CME initiation may give scientists a better idea of a CME’s magnetic structure and ultimately, how this structure influences the CME’s path through space and interaction with Earth’s magnetic fields – an important piece to the puzzle of the Sun’s dynamic behavior.

The model begins with real spacecraft observations of a CME, including the eruption’s initial speed and location on the Sun, and then projects how the CME could travel based on the fundamental laws of electromagnetics. Ultimately, it returns a series of synthetic images, which look similar to those produced of actual observations from NASA and ESA’s SOHO or NASA’s STEREO, simulating the CME’s propagation through space.

A team led by Tamas Gombosi at the University of Michigan’s Department of Climate and Space Sciences and Engineering developed the model as part of its Space Weather Modeling Framework, which is also hosted at the CCMC. All of the CCMC’s space weather models are available for use and study by researchers and the public through runs on request. In addition, EEGGL, and the model it supports, is the first “first principles” model to simulate CMEs including their magnetic structure open to the public.

How Did Ancient Pueblo’s (Anasazi) Possess Geometric Precision?

The ancient Pueblo people “the Anasazi “, of the Southwestern United States had no written language or numerical system, but the complexities of their architectural feats suggest they understood advanced geometry.

In a new study, published this week in the Journal of Archaeological Science: Reports, scientists at Arizona State University detailed the proof of the Pueblo people’s geometric sophistication.

Their abilities are exemplified at the Sun Temple archaeological site in Mesa Verde National Park, in Montezuma County, Colo. Sherry Towers, a professor at Arizona State, said in a news release. “I noticed in my site survey that the same measurements kept popping up over and over again. When I saw that the layout of the site’s key features also involved many geometrical shapes, I decided to take a closer look.”

While surveying the expansive layout, Towers and her colleagues found equilateral triangles, squares, 45-degree right triangles, Pythagorean triangles and the “golden rectangle.”

The golden rectangle and its eye-pleasing proportions is often employed in the arrangement of pieces of Western art — the positioning of figures and shapes within a painting, drawing or print. Mathematicians in ancient Greece and Egypt described the unique shape and its aesthetic qualities. Evidence of the golden rectangle has also been found among Mayan art and architecture.

But unlike the Egyptians, Greeks and Mayans, the Pueblos had no written words or numbers with which to make notes — no guides for building perfectly proportioned multi-room houses and multi-building complexes.

“This is what I find especially amazing,” Towers said. “The genius of the site’s architects cannot be underestimated. If you asked someone today to try to reconstruct this site and achieve the same precision that they had using just a stick and a piece of cord, it’s highly unlikely they’d be able to do it, especially if they couldn’t write anything down as they were working.”

New Study Suggest Dwarf Cluster Formed Milky Way

Using data from the Sloan Digital Sky Survey (SDSS) and various optical telescopes, a team of astronomers has discovered seven distinct groups of dwarf galaxies with just the right starting conditions to eventually merge and form larger galaxies, including spiral galaxies like the Milky Way. This discovery offers compelling evidence that the mature galaxies we see in the universe today were formed when smaller galaxies merged many billions of years ago.

“We know that to make a large galaxy, the universe has to bring together many smaller galaxies,” said Sabrina Stierwalt an astronomer with the National Radio Astronomy Observatory (NRAO) and University of Virginia in Charlottesville. “For the first time, we have found examples of the first steps in this process — entire populations of dwarf galaxies that are all bound together in the same general neighborhoods.”

Stierwalt and her team began their search by poring over SDSS data looking for pairs of interacting dwarf galaxies. The astronomers then examined the images to find specific pairs that appeared to be part of even larger assemblages of similar galaxies.

The researchers then used the Magellan telescope in Chile, the Apache Point Observatory in New Mexico, and the Gemini telescope in Hawaii to confirm that the apparent clusters are not just on the same line of sight but are also approximately the same distance from Earth, indicating they are gravitationally bound together.

This discovery of long-sought groups of tiny galaxies is reported online in the journal Nature Astronomy.

“We hope this discovery will enable future studies of groups of dwarf galaxies and offer insights into the formation of galaxies like the Milky Way,” concluded Stierwalt.

One of the Brightest Distant Galaxies Known Discovered

An international team led by researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL) has discovered one of the brightest “non-active” galaxies in the early universe. Finding BG1429+1202 was made possible by the “help” of a massive elliptical galaxy along the line of sight to the object, which acted as a kind of lens, amplifying the brightness and distorting the observed image. The results, published in Astrophysical Journal Letters, are part of the BELLS GALLERY project, based on the analysis of one and a half million spectra of galaxies from the Sloan Digital Sky Survey (SDSS).

The phenomenon of gravitational lensing, predicted by Einstein’s General Theory of Relativity, is produced when light is deflected as it passes by a very massive object. For a distant observer the mass of the elliptical galaxy acts on the light as if it were a huge lens, producing a much brighter image of the source, BG1429+1202, allowing us to see details which would otherwise be too faint to detect.

“This is one of the few known cases of galaxies”, says Rui Marques Chaves, a doctoral student at the IAC-ULL and first author of the article, “with a very high apparent brightness and also an intrinsically high luminosity. The observations allowed us to determine its key properties in a very short time”. To study this system, two telescopes at the Observatorio del Roque de los Muchachos (Garafía, La Palma) were used: the Gran Telescopio CANARIAS (GTC) and the William Herschel Telescope (WHT), of the Isaac Newton Group of Telescopes (ING). The system is formed of a massive elliptical galaxy at a distance of 5,400 million light years, and behind it is BG1429+1202, which emits Lyman alpha radiation, 11,400 million light years away from us (we see it as it was only some 2,300 million years after the Big Bang). The lensing galaxy produces four distinct images of the distant galaxy, with a flux which is nine times bigger than it would be without this natural lens lying along the line of sight.

An exceptional characteristic of BG1429+1202 is its very high luminosity in the Lyman alpha emission line, one of the brightest in the ultraviolet range, because other similar cases of lensed galaxies do not show such strong emission in this line. Although the gravitational lensing effect has been used in many research projects, the method of selecting distant Lyman-alpha emitting galaxies has been used for the first time in the BELLS GALLERY project. “We analyzed around a million and a half spectra of galaxies”, adds Yiping Shu, an astronomer at the National Astronomical Observatories (NAOC), in Beijing (China) and first author of earlier publications from the same project. “They were obtained with the Sloan Telescope, at the Apache Point Observatory in New Mexico (USA), and we have detected emission in Lyma-alpha from galaxies much further away than their lenses in 187 cases, of which we have gone on to observe 21 with the Hubble Space Telescope. Those observations confirm that the majority of these objects are gravitationally lensed”.

The increase in apparent brightness (the brightness observed from Earth) of distant galaxies which is produced by gravitational lenses allows us to obtain data of improved quality. “With telescopes such as the GTC and the WHT”, explains Ismael Pérez Fournon, a researcher at the IAC-ULL and coordinator of this article, “We can carry out studies which would be impossible without the presence of the lenses. In practice it is as if we were observing already with one of the future giant telescopes, such as the Extremely Large European Telescope (E-ELT) of 39 m or the Thirty Meter Telescope (TMT).” “BG1429+1202 is so bright that it can even be seen on the photographic images of the Digital Sky Survey”, adds Paloma Matínez Navajas, a researcher at the IAC and another of the authors of the study.

In spite of the numerous previous studies of gravitational lenses based on images and spectra from the Sloan Digital Sky Survey, BG1429+1202 had not been noticed until this work. “Discoveries like BG1429+1202 demonstrate the way in which big astronomical data sets from large surveys can be mined for new astrophysical applications. At the National Optical Astronomy Observatory (NOAO, in Tucson, Arizona USA), we are deploying open-access capabilities to support these kinds of survey-scale archival research projects using public wide-field imaging data from the Dark Energy Camera and other instruments, as well as future data sets from projects such as the Dark Energy Spectroscopic Instrument (DESI), concludes Adam Bolton, Associate Director of the NOAO and an author on this paper.

BREAKING NEWS: Earth Breaks Heat Record in 2016 and Why This Means Nothing

Last year, the Earth sweltered under the hottest temperatures in modern times for the third year in a row, US scientists said Wednesday, raising new concerns about the quickening pace of climate change.

Temperatures spiked to new national highs in parts of India, Kuwait and Iran, while sea ice melted faster than ever in the fragile Arctic, said the report by the National Oceanic and Atmospheric Administration.

Taking a global average of the land and sea surface temperatures for the entire year, NOAA found the data for “2016 was the highest since record keeping began in 1880,” said the announcement.

And there’s your answer to why this means nothing. The recording of temperature variations is barely over a hundred years old. This is “nothing” as it related to geological shifts which can be measured in thousands of years, millions of years, and even billions of years.

It is all relative to “cycles”. Short-term cycles, long-term cycles, medium-term cycles, cycles within cycles. Climate cycles can be associated to solar cycles, which in themselves provide short, medium and long-term cycles. Climate variance can also be associated to solar system cycles which are driven by interplanetary cyclical disturbances which include shifting variances in our galaxy Milky Way.

To no surprise, it does not stop there; unfortunately, our newest astronomical instruments do. Now perhaps you can see why I have turned my attention to my latest body of research titled “Science Of Cycles”. The further and more advanced our astronomical instruments are developed, the more we learn of the intricate web of causal effects identifying a relationship from our most distant galaxies, to our small little house called Earth which is located in our tiny neighborhood called Solar System, which is part of our city named Milky Way.

Another factor has been the Pacific Ocean warming trend of El Nino, which experts say exacerbates the planet’s already rising warmth. And guess what is the cause of El Nino’s, La Nina’s, and of course La Cucaracha. The cause is shifting jet stream and ocean currents. And what is the cause of this shifting? It is charged particles coming from our Sun and our galaxy Milky Way. When they hit the Earth’s magnetic field, it morphs around Earth like a cocoon which as an effect on our upper atmosphere.

The fact is Earth has seen much hotter and cooler temperatures in her recent and distant past. To take a tiny snippet of 120 years is more than dishonest; it is reckless and appears to be used by special interest. Another fact…is  there really even one person on this Earth who is “pro” pollution? The greatest danger is for special interest to manipulate the populist in believing we can control cyclical heating and cooling trends. We cannot. There is only so much money in the world, and we should balance our efforts spending a significant portion on “preparation and preparedness”.