NASA Study Finds Solar Storms Could Spark Soils at Moon’s Poles

Powerful solar storms can charge up the soil in frigid, permanently shadowed regions near the lunar poles, and may possibly produce “sparks” that could vaporize and melt the soil, perhaps as much as meteoroid impacts, according to NASA-funded research. This alteration may become evident when analyzing future samples from these regions that could hold the key to understanding the history of the moon and solar system.

The moon has almost no atmosphere, so its surface is exposed to the harsh space environment. Impacts from small meteoroids constantly churn or “garden” the top layer of the dust and rock, called regolith, on the moon. “About 10 percent of this gardened layer has been melted or vaporized by meteoroid impacts,” said Andrew Jordan of the University of New Hampshire, Durham. “We found that in the moon’s permanently shadowed regions, sparks from solar storms could melt or vaporize a similar percentage.” Jordan is lead author of a paper on this research published online in Icarus August 31, 2016.

Explosive solar activity, like flares and coronal mass ejections, blasts highly energetic, electrically charged particles into space. Earth’s atmosphere shields us from most of this radiation, but on the moon, these particles—ions and electrons—slam directly into the surface. They accumulate in two layers beneath the surface; the bulky ions can’t penetrate deeply because they are more likely to hit atoms in the regolith, so they form a layer closer to the surface while the tiny electrons slip through and form a deeper layer. The ions have positive charge while the electrons carry negative charge. Since opposite charges attract, normally these charges flow towards each other and balance out.

In August 2014, however, Jordan’s team published simulation results predicting that strong solar storms would cause the regolith in the moon’s permanently shadowed regions (PSRs) to accumulate charge in these two layers until explosively released, like a miniature lightning strike. The PSRs are so frigid that regolith becomes an extremely poor conductor of electricity. Therefore, during intense solar storms, the regolith is expected to dissipate the build-up of charge too slowly to avoid the destructive effects of a sudden electric discharge, called dielectric breakdown. The research estimates the extent that this process can alter the regolith.

“This process isn’t completely new to space science electrostatic discharges can occur in any poorly conducting (dielectric) material exposed to intense space radiation, and is actually the leading cause of spacecraft anomalies,” said Timothy Stubbs of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, a co-author of the paper. The team’s analysis was based on this experience. From spacecraft studies and analysis of samples from NASA’s Apollo lunar missions, the researchers knew how often large solar storms occur. From previous lunar research, they estimated that the top millimeter of regolith would be buried by meteoroid impacts after about a million years, so it would be too deep to be subject to electric charging during solar storms. Then they estimated the energy that would be deposited over a million years by both meteoroid impacts and dielectric breakdown driven by solar storms, and found that each process releases enough energy to alter the regolith by a similar amount.

“Lab experiments show that dielectric breakdown is an explosive process on a tiny scale,” said Jordan. “During breakdown, channels could be melted and vaporized through the grains of soil. Some of the grains may even be blown apart by the tiny explosion. The PSRs are important locations on the moon, because they contain clues to the moon’s history, such as the role that easily vaporized material like water has played. But to decipher that history, we need to know in what ways PSRs are not pristine; that is, how they have been weathered by the space environment, including solar storms and meteoroid impacts.”

The next step is to search for evidence of dielectric breakdown in PSRs and determine if it could happen in other areas on the moon. Observations from NASA’s Lunar Reconnaissance Orbiter spacecraft indicate that the soil in PSRs is more porous or “fluffy” than other areas, which might be expected if breakdown was blasting apart some of the soil grains there. However, experiments, some already underway, are needed to confirm that breakdown is responsible for this. Also, the lunar night is long—about two weeks—so it can become cold enough for breakdown to occur in other areas on the moon, according to the team. There may even be “sparked” material in the Apollo samples, but the difficulty would be determining if this material was altered by breakdown or a meteoroid impact. The team is working with scientists at the Johns Hopkins University Applied Physics Laboratory on experiments to see how breakdown affects the regolith and to look for any tell-tale signatures that could distinguish it from the effects of meteoroid impacts.

BREAKING NEWS: NASA Mission Tries to Discern Comets From Asteroids

First, let me address the traditional explanation of the difference between comets and asteroids. Secondly, I will inform you of what traditional explanations omit – by accident or purposeful is for you to decide. My personal research has come to the following conclusion: In the most simple of terms: “An asteroid is nothing more than an outgassed comet…period.”

Traditional
The main difference between asteroids and comets is their composition, as in, what they are made of. Asteroids are made up of metals and rocky material, while comets are made up of ice, dust and rocky material. Both asteroids and comets were formed early in the history of the solar system about 4.5 billion years ago. Asteroids formed much closer to the Sun, where it was too warm for ices to remain solid. Comets formed farther from the Sun where ices would not melt.

New Thought
The hypothesis of the explosion of a number of planets and moons of our Solar System during its 4.6-billion-year history is in excellent accord with all known observational constraints, even without adjustable parameters or ad hoc helper hypotheses.

Many of its boldest predictions have been fulfilled. In most instances, these predictions were judged highly unlikely by the current standard models. Moreover, in several cases, the entire exploded planet model was at risk of being falsified if the predictions failed.

The successful predictions include: (1) satellites of asteroids; (2) satellites of comets; (3) salt water in meteorites; (4) ‘roll marks’ leading to boulders on asteroids; (5) the time and peak rate of the 1999 Leonid meteor storm; (6) explosion signatures for asteroids; (7) the strongly spiked energy parameter for new comets; (8) the distribution of black material on slowly rotating airless bodies; (9) splitting velocities of comets; (10) the asteroid-like nature of Deep Impact target Comet Tempel 1; and (11) the presence of high-formation-temperature minerals in the Stardust comet dust sample return.

By all existing evidence, the exploded planet hypothesis has proved far more useful than the half-dozen or so hypotheses it would replace. Among the many important conclusions are the following. (a) Perhaps as many as six former planets of our Solar System have exploded over its 4.6-billion-year history. (b) In particular, Mars is not an original planet, but a former moon of an exploded planet. (c) As a major player in Solar System evolution, the exploded planet scenario must be considered as a likely propagation vehicle for the spread of biogenic organisms.

NASA’s NEOWISE mission has recently discovered some celestial objects traveling through our neighborhood, including one on the blurry line between asteroid and comet. Another asteroid/comet might be seen with binoculars through next week.

An object called 2016 WF9 was detected by the NEOWISE project on Nov. 27, 2016. It is in an orbit that takes it on a scenic tour of our solar system. At its farthest distance from the Sun, it approaches Jupiter’s orbit. Over the course of 4.9 Earth-years, it travels inward, passing under the main asteroid belt and the orbit of Mars until it swings just inside Earth’s own orbit. After that, it heads back toward the outer solar system. Objects in these types of orbits have multiple possible origins; it might once have been a comet, or it could have strayed from a population of dark objects in the main asteroid belt.

2016 WF9 will approach Earth’s orbit on Feb. 25, 2017. At a distance of nearly 32 million miles (51 million kilometers) from Earth, this pass will not bring it particularly close. The trajectory of 2016 WF9 is well understood, and the object is not a threat to Earth for the foreseeable future.

A different object, discovered by NEOWISE a month earlier, is more clearly a comet, releasing dust as it nears the Sun. This comet, C/2016 U1 NEOWISE, “has a good chance of becoming visible through a good pair of binoculars, although we can’t be sure because a comet’s brightness is notoriously unpredictable,” said Paul Chodas, manager of NASA’s Center for Near-Earth Object (NEO) Studies at the Jet Propulsion Laboratory in Pasadena, California.

As seen from the northern hemisphere during the first week of 2017, comet C/2016 U1 NEOWISE will be in the southeastern sky shortly before dawn. It is moving farther south each day and it will reach its closest point to the Sun, inside the orbit of Mercury, on Jan. 14, before heading back out to the outer reaches of the solar system for an orbit lasting thousands of years. While it will be visible to skywatchers at Earth, it is not considered a threat to our planet either.

NEOWISE is the asteroid-and-comet-hunting portion of the Wide-Field Infrared Survey Explorer (WISE) mission. After discovering more than 34,000 asteroids during its original mission, NEOWISE was brought out of hibernation in December of 2013 to find and learn more about asteroids and comets that could pose an impact hazard to Earth. If 2016 WF9 turns out to be a comet, it would be the 10th discovered since reactivation. If it turns out to be an asteroid, it would be the 100th discovered since reactivation.

What NEOWISE scientists do know is that 2016 WF9 is relatively large: roughly 0.3 to 0.6 mile (0.5 to 1 kilometer) across. It is also rather dark, reflecting only a few percent of the light that falls on its surface. This body resembles a comet in its reflectivity and orbit, but appears to lack the characteristic dust and gas cloud that defines a comet.

“2016 WF9 could have cometary origins,” said Deputy Principal Investigator James “Gerbs” Bauer at JPL. “This object illustrates that the boundary between asteroids and comets is a blurry one; perhaps over time this object has lost the majority of the volatiles that linger on or just under its surface.”

Near-Earth objects (NEOs) absorb most of the light that falls on them and re-emit that energy at infrared wavelengths. This enables NEOWISE’s infrared detectors to study both dark and light-colored NEOs with nearly equal clarity and sensitivity.

“These are quite dark objects,” said NEOWISE team member Joseph Masiero, “Think of new asphalt on streets; these objects would look like charcoal, or in some cases are even darker than that.

NEOWISE data have been used to measure the size of each near-Earth object it observes. Thirty-one asteroids that NEOWISE has discovered pass within about 20 lunar distances from Earth’s orbit, and 19 are more than 460 feet (140 meters) in size but reflect less than 10 percent of the Sunlight that falls on them.

The Wide-field Infrared Survey Explorer (WISE) has completed its seventh year in space after being launched on Dec. 14, 2009.

__________________

As a result of natural disasters occurring more often (no surprise for us paying attention), I find myself engaged in the onsite events more often, and less available to maintain my alternative ventures keeping SOC healthy. But thanks to my wife’s exorbitant creative thinking, I believe we found a way to stay on top.

Between now and January 15th 2017, by donating $10 you will be grandfathered into a full one year membership. Beginning January 1st 2017, we will be going back to our annual memberships starting at $34.95 per year. Yes, this is to say with just $10 you will have a full membership for the next full year of 2017.

For those of you who can do a bit more, we graciously appreciate when you can provide larger amounts – it truly goes a long way in keeping us alive and well.

Go to the following link which takes you to a page. On the right side of our home page under where it says “Science of Cycles Community Support” you will find a drop-down menu to choose your amount. Beginning next year we will have other methods for you to purchase a membership, for now please use PayPal. Remember, you do not have to join PayPal to use it. Just look for the tap that says Pay with Debit or Credit Card. No sign-up is necessary.……..CLICK HERE

Magnitude 7.2 Quake Hits Near Fiji; Tsunami Alert Issued

A powerful earthquake struck off the coast of Fiji on Wednesday, prompting a brief tsunami warning for the Pacific island nation. There were no immediate reports of damage or injuries.

The magnitude 7.2 quake, which hit at 9:52 a.m. local time, struck about 220 kilometers (135 miles) southwest of the tourist hub of Nadi, the U.S. Geological Survey said. The quake was a relatively shallow 15 kilometers (9 miles) deep. Shallower quakes generally cause more damage than ones that strike deeper.

The Pacific Tsunami Warning Center issued a tsunami warning for coastlines within 300 kilometers (190 miles) of the epicenter, then lifted the warning about an hour later. A tsunami of just 1 centimeter (less than an inch) was observed in the capital of Suva, the center said.

Fiji’s Principal Disaster Management Officer, Sunia Ratulevu, said there had been no reports of damage or injuries from the quake, and no unusual wave activity had been reported. The quake struck far offshore and was not felt in Suva or Nadi, he said.

There have been several big aftershocks in the same area. The strongest two had a magnitude of 5.2 and 5.4.

When the tsunami alert was issued, people in Suva fled their offices and headed inland, Ratulevu said. But by early afternoon, authorities were telling people the threat had passed and it was safe to return to work.

Fiji is prone to earthquakes because of its location on the “Ring of Fire,” an arc of seismic faults around the Pacific Ocean.

There was no threat to nearby Pacific island nations Vanuatu and New Caledonia, authorities said.

A 2004 quake and tsunami killed a total of 230,000 people in a dozen countries, most of them in Aceh, Indonesia.