1st Super Blue Blood Moon In 35 Years

The moon put on a rare cosmic show Wednesday: a red blue moon, super big and super bright.

It’s the first time in 35 years a blue moon has synced up with a supermoon and a total lunar eclipse, or blood moon because of its red hue.

Hawaii and Alaska had the best seats, along with the Canadian Yukon, Australia and Asia. The western U.S. also had good viewing, along with Russia.

At the Griffith Observatory in Los Angeles, hundreds gathered on the lawn in the wee hours, under clear skies. Traffic was backed up more than a mile around the observatory. Sky-gazers also lined the beach near the Santa Monica Pier, some snapping photos and others reclining in the sand, their faces turned upward.

John Cook joined fellow photography enthusiasts at the pier, using the Ferris wheel and roller coaster for his foreground.

“It was incredible,” said Cook, a visual effects artist for films. Photographers also gathered at the Telegraph Hill neighborhood of San Francisco, striving to get the famous Coit Tower in their moon shots.

The U.S. East Coast, Europe and most of South America and Africa were out of luck for the eclipse. But at Cape Canaveral, Florida, where a rocket delivered America’s first satellite to orbit exactly 60 years ago—Explorer 1—the blue super moon loomed large in the sky.

The second full moon in a calendar month is a blue moon. This one also happened to be an especially close and bright moon, or supermoon. Add a total eclipse, known as a blood moon for its red tint, and it was a lunar showstopper.

NASA called it a lunar trifecta: the first super blue blood moon since 1982. That combination won’t happen again until 2037. The next total lunar is in July.

NASA lunar scientist Noah Petro said he was astonished—and thrilled—by all the attention and fuss. The total solar eclipse that swept across the U.S. in August contributed to Wednesday’s buzz, he noted. Missing out on the eclipse from his home in Virginia, he watched the event online Wednesday morning with his two children, ages 3 and 7.

“I hope that people use this as an opportunity to dig in a little more and learn about our own planet, our wonderful sister planet, the moon, and the sun and all the other great objects in the solar system,” Petro said on his way to work at Goddard Space Flight Center in Greenbelt, Maryland.

A total lunar eclipse—considered the most scientific of Wednesday’s threesome—occurs when the sun, Earth and moon line up perfectly, casting Earth’s shadow on the moon.

Scientists were keen to study the sharp, sudden drop in temperature at the lunar surface as Earth’s shadow blankets the moon. During the more than one hour of totality, the temperature was expected to plunge 100 degrees Fahrenheit (38 Celsius), said Petro. He’s deputy project scientist for NASA’s Lunar Reconnaissance Orbiter, circling the moon since 2009. His team took special precautions to keep the spacecraft warm during the eclipse.

For the trivia crowd, the moon was 223,820 miles (360,200 kilometers) away at the peak of the eclipse, close enough for supermoon status.

Newborns Or Survivors? The Unexpected Matter Found In Hostile Black Hole Winds

The existence of large numbers of molecules in winds powered by supermassive black holes at the centers of galaxies has puzzled astronomers since they were discovered more than a decade ago. Molecules trace the coldest parts of space, and black holes are the most energetic phenomena in the universe, so finding molecules in black hole winds was like discovering ice in a furnace.

Astronomers questioned how anything could survive the heat of the energetic outflows, but a new theory from researchers in Northwestern University’s Center for Interdisciplinary Research and Exploration in Astrophysics (CIERA) predicts that these molecules are not survivors at all, but brand-new molecules, born in the winds with unique properties that enable them to adapt to and thrive in the hostile environment.

The theory, published in the Monthly Notices of the Royal Astronomical Society, is the work of Lindheimer post-doctoral fellow Alexander Richings, who developed the computer code that, for the first time, modeled the detailed chemical processes that occur in interstellar gas accelerated by radiation emitted during the growth of supermassive black holes. Claude-André Faucher-Giguère, who studies galaxy formation and evolution as an assistant professor in Northwestern’s Weinberg College of Arts and Sciences, is a co-author.

“When a black hole wind sweeps up gas from its host galaxy, the gas is heated to high temperatures, which destroy any existing molecules,” Richings said. “By modeling the molecular chemistry in computer simulations of black hole winds, we found that this swept-up gas can subsequently cool and form new molecules.”

This theory answers questions raised by previous observations made with several cutting-edge astronomical observatories including the Herschel Space Observatory and the Atacama Large Millimeter Array, a powerful radio telescope located in Chile.

In 2015, astronomers confirmed the existence of energetic outflows from supermassive black holes found at the center of most galaxies. These outflows kill everything in their path, expelling the food — or molecules — that fuel star formation. These winds are also presumed to be responsible for the existence of “red and dead” elliptical galaxies, in which no new stars can form.

Then, in 2017, astronomers observed rapidly moving new stars forming in the winds — a phenomenon they thought would be impossible given the extreme conditions in black hole-powered outflows.

New stars form from molecular gas, so Richings and Faucher-Giguère’s new theory of molecule formation helps explain the formation of new stars in winds. It upholds previous predictions that black hole winds destroy molecules upon first collision but also predicts that new molecules — including hydrogen, carbon monoxide and water — can form in the winds themselves.

“This is the first time that the molecule formation process has been simulated in full detail, and in our view, it is a very compelling explanation for the observation that molecules are ubiquitous in supermassive black hole winds, which has been one of the major outstanding problems in the field,” Faucher-Giguère said.

Richings and Faucher-Giguère predict that the new molecules formed in the winds are warmer and brighter in infrared radiation compared to pre-existing molecules. That theory will be put to the test when NASA launches the James Webb Space Telescope in spring 2019. If the theory is correct, the telescope will be able to map black hole outflows in detail using infrared radiation.

Giant Earthquakes: Not As Random As Thought

By analyzing sediment cores from Chilean lakes, an international team of scientists discovered that giant earthquakes reoccur with relatively regular intervals. When also taking into account smaller earthquakes, the repeat interval becomes increasingly more irregular to a level where earthquakes happen randomly in time.

“In 1960, South-Central Chile was hit by the largest known quake on earth with a magnitude of 9.5. Its tsunami was so massive that -in addition to inundating the Chilean coastline- it travelled across the Pacific Ocean and even killed about 200 persons in Japan,” says Jasper Moernaut, an assistant professor at the University of Innsbruck, Austria, and lead author of the study. “Understanding when and where such devastating giant earthquakes may occur in the future is a crucial task for the geoscientific community.”

It is generally believed that giant earthquakes release so much energy that several centuries of stress accumulation are needed to produce a new big one. Therefore, seismological data or historical documents simply do not go back far enough in time to reveal the patterns of their recurrence. “It is an ongoing topic of very vivid debate whether we should model large earthquake recurrence as a quasi-regular or random process in time. Of course, the model choice has very large repercussions on how we evaluate the actual seismic hazard in Chile for the coming decades to centuries.”

In their recent paper in Earth and Planetary Science Letters, Moernaut`s team of Belgian, Chilean and Swiss researchers presented a new approach to tackle the problem of large earthquake recurrence. By analyzing sediments on the bottom of two Chilean lakes, they recognized that each strong earthquake produces underwater landslides which get preserved in the sedimentary layers accumulating on the lake floor. By sampling these layers in up to 8 m long sediment cores, they retrieved the complete earthquake history over the last 5000 years, including up to 35 great earthquakes of a magnitude larger than 7.7.

“What is truly exceptional is the fact that in one lake the underwater landslides only happen during the strongest shaking events (like a M9 earthquake), whereas the other lake also reacted to “smaller” M8 earthquakes,” says Maarten Van Daele from Ghent University, Belgium. “In this way we were able to compare the patterns in which earthquakes of different magnitudes take place. We did not have to guess which model is the best, we could just derive it from our data.”

With this approach, the team found that giant earthquakes (like the one in 1960) reoccur every 292 ±93 years and thus the probability for such giant events remains very low in the next 50-100 years. However, the “smaller” (~M8) earthquakes took place every 139 ±69 years and there is a 29.5% chance that such an event may occur in the next 50 years. Since 1960, the area has been seismically very quiet, but a recent M7.6 earthquake (on 25 DEC 2016) near Chiloé Island suggests a reawakening of great earthquakes in South-Central Chile.

“These Chilean lakes form a fantastic opportunity to study earthquake recurrence,” says Moernaut. “Glacial erosion during the last Ice Age resulted in a chain of large and deep lakes above the subduction zone, where the most powerful earthquakes are getting generated. We hope to extend our approach along South America, which may allow us to discover whether e.g. earthquakes always rupture in the same segments, or whether other areas in the country are capable of producing giant M9+ earthquakes.”

“In the meanwhile, we already initiated similar studies on Alaskan, Sumatran and Japanese lakes,” says Marc De Batist from Ghent University. “We are looking forward to some exciting comparisons between the data from these settings, and see if the Chilean patterns hold for other areas that have experienced giant M9+ earthquakes in the past.”

Applying Machine Learning To The Universe’s Mysteries

Computers can beat chess champions, simulate star explosions, and forecast global climate. We are even teaching them to be infallible problem-solvers and fast learners.

And now, physicists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and their collaborators have demonstrated that computers are ready to tackle the universe’s greatest mysteries. The team fed thousands of images from simulated high-energy particle collisions to train computer networks to identify important features.

The researchers programmed powerful arrays known as neural networks to serve as a sort of hivelike digital brain in analyzing and interpreting the images of the simulated particle debris left over from the collisions. During this test run the researchers found that the neural networks had up to a 95 percent success rate in recognizing important features in a sampling of about 18,000 images.

The study was published Jan. 15 in the journal Nature Communications.

The next step will be to apply the same machine learning process to actual experimental data.

Powerful machine learning algorithms allow these networks to improve in their analysis as they process more images. The underlying technology is used in facial recognition and other types of image-based object recognition applications.

The images used in this study — relevant to particle-collider nuclear physics experiments at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider and CERN’s Large Hadron Collider — recreate the conditions of a subatomic particle “soup,” which is a superhot fluid state known as the quark-gluon plasma believed to exist just millionths of a second after the birth of the universe. Berkeley Lab physicists participate in experiments at both of these sites.

“We are trying to learn about the most important properties of the quark-gluon plasma,” said Xin-Nian Wang, a nuclear physicist in the Nuclear Science Division at Berkeley Lab who is a member of the team. Some of these properties are so short-lived and occur at such tiny scales that they remain shrouded in mystery.

In experiments, nuclear physicists use particle colliders to smash together heavy nuclei, like gold or lead atoms that are stripped of electrons. These collisions are believed to liberate particles inside the atoms’ nuclei, forming a fleeting, subatomic-scale fireball that breaks down even protons and neutrons into a free-floating form of their typically bound-up building blocks: quarks and gluons.

Researchers hope that by learning the precise conditions under which this quark-gluon plasma forms, such as how much energy is packed in, and its temperature and pressure as it transitions into a fluid state, they will gain new insights about its component particles of matter and their properties, and about the universe’s formative stages.

But exacting measurements of these properties — the so-called “equation of state” involved as matter changes from one phase to another in these collisions — have proven challenging. The initial conditions in the experiments can influence the outcome, so it’s challenging to extract equation-of-state measurements that are independent of these conditions.

“In the nuclear physics community, the holy grail is to see phase transitions in these high-energy interactions, and then determine the equation of state from the experimental data,” Wang said. “This is the most important property of the quark-gluon plasma we have yet to learn from experiments.”

Researchers also seek insight about the fundamental forces that govern the interactions between quarks and gluons, what physicists refer to as quantum chromodynamics.

Long-Gang Pang, the lead author of the latest study and a Berkeley Lab-affiliated postdoctoral researcher at UC Berkeley, said that in 2016, while he was a postdoctoral fellow at the Frankfurt Institute for Advanced Studies, he became interested in the potential for artificial intelligence (AI) to help solve challenging science problems.

He saw that one form of AI, known as a deep convolutional neural network — with architecture inspired by the image-handling processes in animal brains — appeared to be a good fit for analyzing science-related images.

“These networks can recognize patterns and evaluate board positions and selected movements in the game of Go,” Pang said. “We thought, ‘If we have some visual scientific data, maybe we can get an abstract concept or valuable physical information from this.'”

Wang added, “With this type of machine learning, we are trying to identify a certain pattern or correlation of patterns that is a unique signature of the equation of state.” So after training, the network can pinpoint on its own the portions of and correlations in an image, if any exist, that are most relevant to the problem scientists are trying to solve.

Accumulation of data needed for the analysis can be very computationally intensive, Pang said, and in some cases it took about a full day of computing time to create just one image. When researchers employed an array of GPUs that work in parallel — GPUs are graphics processing units that were first created to enhance video game effects and have since exploded into a variety of uses — they cut that time down to about 20 minutes per image.

They used computing resources at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) in their study, with most of the computing work focused at GPU clusters at GSI in Germany and Central China Normal University in China.

A benefit of using sophisticated neural networks, the researchers noted, is that they can identify features that weren’t even sought in the initial experiment, like finding a needle in a haystack when you weren’t even looking for it. And they can extract useful details even from fuzzy images.

“Even if you have low resolution, you can still get some important information,” Pang said.

Discussions are already underway to apply the machine learning tools to data from actual heavy-ion collision experiments, and the simulated results should be helpful in training neural networks to interpret the real data.

“There will be many applications for this in high-energy particle physics,” Wang said, beyond particle-collider experiments.

Stellar Magnetism: What’s Behind The Most Brilliant Lights In The Sky?

Space physicists at University of Wisconsin-Madison have just released unprecedented detail on a bizarre phenomenon that powers the northern lights, solar flares and coronal mass ejections (the biggest explosions in our solar system).

The data on so-called “magnetic reconnection” came from a quartet of new spacecraft that measure radiation and magnetic fields in high Earth orbit.

“We’re looking at the best picture yet of magnetic reconnection in space,” says Jan Egedal, a professor of physics and senior author of a study in Physical Review Letters. Magnetic reconnection is difficult to describe, but it can be loosely defined as the merger of magnetic fields that releases an astonishing amount of energy.

Magnetic reconnection remains mysterious, especially since it “breaks the standard law” governing charged particles, or plasma, Egedal says.

Egedal and colleagues studied recordings from Oct. 15, 2016, when the Magnetosphere Multiscale satellite passed through the point where the solar wind meets Earth’s magnetic field. “Our data clearly show that electrons suddenly cease to follow magnetic fields and zoom off in another direction, corkscrewing and turning. That begs for explanation,” Egedal says.

The activity confirmed the theoretical descriptions of magnetic reconnection. But it violated the standard law governing the behavior of plasmas — clouds of charged particles that comprise, for example, the solar wind. “The ‘plasma frozen-in law’ says electrons and magnetic fields have to move together always, and suddenly that does not apply here,” says Egedal. “It’s the clearest example ever to be measured in space, and it blew my mind.”

“Our equations tell you reconnection cannot happen, but it does,” Egedal says, “and our results show us which factors need to be added to the equations. When the law is violated, we can get an explosion. Even in Earth’s moderate magnetic field, reconnection from an area just 10 kilometers across can change the motion of plasma thousands of kilometers distant.”

In the 1970s, telescopes orbiting above earth’s sheltering magnetic field and atmosphere began returning data on X-rays and other non-visible types of radiation. Rather quickly, the age-old image of the sky as a quiet curtain of stars was yanked aside, revealing a zoo of weird objects, powerful beams and cataclysmic explosions.

All of them needed to be explained, and theorists began to focus on magnetic reconnection, which had been sketched out in 1956. By now, magnetic reconnection has been linked to: Black holes, ultra-dense objects with intense gravity that prohibits even light from leaving.Pulsars, which rotate hundreds of times a second and emit piercing beacons of light.Supernovas, which release energy visible across the galaxies when they explode. Active galactic nuclei, super-bright candles that are visible from billions of light years distance.

“Almost everything we know about the universe comes from the light that reaches us,” says Cary Forest, also a professor of physics at UW-Madison. “When one of these fantastic space telescopes sees a massive burst of X-rays that lasts just tens of milliseconds coming from an object in a galaxy far away, this giant burst of energy at such a great distance may reflect a massive reconnection event.”

But there’s more, Forest adds. “When neutron stars merge and give off X-rays, that’s magnetic reconnection. With these advanced orbiting telescopes, just about everything that’s interesting, that goes off suddenly, probably has some major reconnection element at its root.”

Magnetic reconnection also underlies the auroras at both poles, Egedal says. When reconnection occurs on the sunward side of Earth, as was seen in the recent study, “it changes the magnetic energy in the system. This energy migrates to the night side, and the same thing happens there, accelerating particles to the poles, forming auroras.”

Beyond offering insight into the role of magnetic reconnection in celestial explosions, eruptions and extraordinary emissions of energy, the observations have a practical side in terms of space weather: explosions of charged matter from the sun can damage satellites and even electrical equipment on the ground. After a solar flare in 1989, for example, the entire power system in Quebec went dark after it picked up a pulse of energy from space. “Across the United States from coast to coast, over 200 power grid problems erupted within minutes of the start of the March 13 magnetic storm,” NASA wrote.

Today, Forest notes, modern utility systems contain switches to interrupt the loop of conductors that could become antennas that pick up a problematic pulse from the sun.

“If we understand reconnection better, perhaps we can improve space weather forecasts,” says Egedal. “We can look at the sun to predict what may happen in two to four days, which is how long the wind from the sun takes to reach Earth.”

-The work was supported by National Science Foundation (NSF) GEM award 1405166 and NASA grant NNX14AL38G. Simulations used NASA HEC and LANL IC resources.

Stellar Embryos In Nearby Dwarf Galaxy Contain Surprisingly Complex Organic Molecules

The nearby dwarf galaxy known as the Large Magellanic Cloud (LMC) is a chemically primitive place.

Unlike the Milky Way, this semi-spiral collection of a few tens-of-billions of stars lacks our galaxy’s rich abundance of heavy elements, like carbon, oxygen, and nitrogen. With such a dearth of heavy elements, astronomers predict that the LMC should contain a comparatively paltry amount of complex carbon-based molecules. Previous observations of the LMC seem to support that view.

New observations with the Atacama Large Millimeter/submillimeter Array (ALMA), however, have uncovered the surprisingly clear chemical “fingerprints” of the complex organic molecules methanol, dimethyl ether, and methyl formate. Though previous observations found hints of methanol in the LMC, the latter two are unprecedented findings and stand as the most complex molecules ever conclusively detected outside of our galaxy.

Astronomers discovered the molecules’ faint millimeter-wavelength “glow” emanating from two dense star-forming embryos in the LMC, regions known as “hot cores.” These observations may provide insights into the formation of similarly complex organic molecules early in the history of the universe.

“Even though the Large Magellanic Cloud is one of our nearest galactic companions, we expect it should share some uncanny chemical similarity with distant, young galaxies from the early universe,” said Marta Sewi?o, an astronomer with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author on a paper appearing in the Astrophysical Journal Letters.

Astronomers refer to this lack of heavy elements as “low metallicity.” It takes several generations of star birth and star death to liberally seed a galaxy with heavy elements, which then get taken up in the next generation of stars and become the building blocks of new planets.

“Young, primordial galaxies simply didn’t have enough time to become so chemically enriched,” said Sewi?o. “Dwarf galaxies like the LMC probably retained this same youthful makeup because of their relatively low masses, which severely throttles back the pace of star formation.”

“Due to its low metallicity, the LMC offers a window into these early, adolescent galaxies,” noted Remy Indebetouw, an astronomer at the National Radio Astronomy Observatory in Charlottesville, Virginia, and coauthor on the study. “Star-formation studies of this galaxy provide a stepping stone to understand star formation in the early universe.”

The astronomers focused their study on the N113 Star Formation Region in the LMC, which is one of the galaxy’s most massive and gas-rich regions. Earlier observations of this area with NASA’s Spitzer Space Telescope and ESA’s Herschel Space Observatory revealed a startling concentration of young stellar objects — protostars that have just begun to heat their stellar nurseries, causing them to glow brightly in infrared light. At least a portion of this star formation is due to a domino-like effect, where the formation of massive stars triggers the formation of other stars in the same general vicinity.

Sewi?o and her colleagues used ALMA to study several young stellar objects in this region to better understand their chemistry and dynamics. The ALMA data surprisingly revealed the telltale spectral signatures of dimethyl ether and methyl formate, molecules that have never been detected so far from Earth.

Complex organic molecules, those with six or more atoms including carbon, are some of the basic building blocks of molecules that are essential to life on Earth and — presumably — elsewhere in the universe. Though methanol is a relatively simple compound compared to other organic molecules, it nonetheless is essential to the formation of more complex organic molecules, like those that ALMA recently observed, among others.

If these complex molecules can readily form around protostars, it’s likely that they would endure and become part of the protoplanetary disks of young star systems. Such molecules were likely delivered to the primitive Earth by comets and meteorites, helping to jumpstart the development of life on our planet.

The astronomers speculate that since complex organic molecules can form in chemically primitive environments like the LMC, it’s possible that the chemical framework for life could have emerged relatively early in the history of the universe.

Earthquake Strikes Afghanistan, Pakistan; Casualties Reported

A strong earthquake has hit the Hindu Kush mountain range in Afghanistan, causing casualties in the country and in neighboring Pakistan.

A girl was killed and at least 15 others injured in various parts of Pakistan as a result of the January 31 quake, the newspaper Dawn reported.

At least three people were injured in the northeastern Afghan province of Badakhshan, according to Gul Mohammad Bedar, the provincial deputy governor. However, Bedar said he did not know how they were injured.

The U.S. Geological Survey said the 6.1-magnitude earthquake struck in the Hindu Kush mountain range in Afghanistan.

Its epicenter of was 35 kilometers south of Jarm in the northeastern corner of Afghanistan near the Tajik border, at a depth of 191 kilometers.

Reports said the quake was felt in Kabul, Dushanbe, Islamabad, and New Delhi.

The Pakistani girl was killed and at least eight other people injured when roofs collapsed on mud-brick homes in the village of Lasbela in the southwestern province of Balochistan, said Asmat Ullah from the provincial disaster-management agency.

In the northwestern city of Peshawar, four girls were injured during a rush to evacuate their school, local official Tauseefur Rehman said.

TV footage showed people fleeing houses, offices, and schools in panic in Islamabad and elsewhere in Pakistan after the quake struck around lunchtime.

“It was scary. We all ran out. We thought roofs and walls are going to fall on us,” Adeel Ahmed from the northern town of Balakot told the dpa news agency.

Mobile-phone signals were temporarily disrupted in both Islamabad and Peshawar due to the quake, Dawn reported.

Kabul residents, already on edge following a series of deadly attacks, also ran out of buildings in panic after the earthquake.

Bedar, Badakhshan’s deputy governor, said that the quake caused cracks in the walls of a number of houses in the province.

He said officials were trying to collect information from the remote districts in Badakhshan, where the Taliban has a strong presence.

Mohammad Mustafa, acting district governor in Jarm, said that authorities had no communications with dozens of villages.

Afghanistan is frequently hit by earthquakes, especially in the Hindu Kush mountain range, which lies near the junction of the Eurasian and Indian tectonic plates.

A 7.5-magnitude earthquake rocked the region in October 2015, killing more than 400 people and leaving several thousand homeless in Afghanistan, Pakistan, and India.

And in October 2005, a 7.6-magnitude quake struck the Pakistani-administered part of Kashmir and killed at least 79,000 people in the country, with additional fatalities reported in India and Afghanistan.