Juno Solves 39-Year Old Mystery Of Jupiter Lightning

Ever since NASA’s Voyager 1 spacecraft flew past Jupiter in March, 1979, scientists have wondered about the origin of Jupiter’s lightning. That encounter confirmed the existence of Jovian lightning, which had been theorized for centuries. But when the venerable explorer hurtled by, the data showed that the lightning-associated radio signals didn’t match the details of the radio signals produced by lightning here at Earth.

In a new paper published in Nature today, scientists from NASA’s Juno mission describe the ways in which lightning on Jupiter is actually analogous to Earth’s lightning. Although, in some ways, the two types of lightning are polar opposites.

“No matter what planet you’re on, lightning bolts act like radio transmitters—sending out radio waves when they flash across a sky,” said Shannon Brown of NASA’s Jet Propulsion Laboratory in Pasadena, California, a Juno scientist and lead author of the paper. “But until Juno, all the lightning signals recorded by spacecraft [Voyagers 1 and 2, Galileo, Cassini] were limited to either visual detections or from the kilohertz range of the radio spectrum, despite a search for signals in the megahertz range. Many theories were offered up to explain it, but no one theory could ever get traction as the answer.”

Enter Juno, which has been orbiting Jupiter since July 4, 2016. Among its suite of highly sensitive instruments is the Microwave Radiometer Instrument (MWR), which records emissions from the gas giant across a wide spectrum of frequencies.

“In the data from our first eight flybys, Juno’s MWR detected 377 lightning discharges,” said Brown. “They were recorded in the megahertz as well as gigahertz range, which is what you can find with terrestrial lightning emissions. We think the reason we are the only ones who can see it is because Juno is flying closer to the lighting than ever before, and we are searching at a radio frequency that passes easily through Jupiter’s ionosphere.”

While the revelation showed how Jupiter lightning is similar to Earth’s, the new paper also notes that where these lightning bolts flash on each planet is actually quite different.

“Jupiter lightning distribution is inside out relative to Earth,” said Brown. “There is a lot of activity near Jupiter’s poles but none near the equator. You can ask anybody who lives in the tropics—this doesn’t hold true for our planet.”

Why do lightning bolts congregate near the equator on Earth and near the poles on Jupiter? Follow the heat.

Earth’s derives the vast majority of its heat externally from solar radiation, courtesy of our Sun. Because our equator bears the brunt of this sunshine, warm moist air rises (through convection) more freely there, which fuels towering thunderstorms that produce lightning.

Jupiter’s orbit is five times farther from the Sun than Earth’s orbit, which means that the giant planet receives 25 times less sunlight than Earth. But even though Jupiter’s atmosphere derives the majority of its heat from within the planet itself, this doesn’t render the Sun’s rays irrelevant. They do provide some warmth, heating up Jupiter’s equator more than the poles—just as they heat up Earth. Scientists believe that this heating at Jupiter’s equator is just enough to create stability in the upper atmosphere, inhibiting the rise of warm air from within. The poles, which do not have this upper-level warmth and therefore no atmospheric stability, allow warm gases from Jupiter’s interior to rise, driving convection and therefore creating the ingredients for lightning.

“These findings could help to improve our understanding of the composition, circulation and energy flows on Jupiter,” said Brown. But another question looms, she said. “Even though we see lightning near both poles, why is it mostly recorded at Jupiter’s north pole?”

In a second Juno lightning paper published today in Nature Astronomy, Ivana Kolmašová of the Czech Academy of Sciences, Prague, and colleagues, present the largest database of lightning-generated low-frequency radio emissions around Jupiter (whistlers) to date. The data set of more than 1,600 signals, collected by Juno’s Waves instrument, is almost 10 times the number recorded by Voyager 1. Juno detected peak rates of four lightning strikes per second (similar to the rates observed in thunderstorms on Earth) which is six times higher than the peak values detected by Voyager 1.

“These discoveries could only happen with Juno,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute, San Antonio. “Our unique orbit allows our spacecraft to fly closer to Jupiter than any other spacecraft in history, so the signal strength of what the planet is radiating out is a thousand times stronger. Also, our microwave and plasma wave instruments are state-of-the-art, allowing us to pick out even weak lightning signals from the cacophony of radio emissions from Jupiter. ”

NASA’s Juno spacecraft will make its 13th science flyby over Jupiter’s mysterious cloud tops on July 16.

NASA Finds Ancient Organic Material, Mysterious Methane On Mars

NASA’s Curiosity rover has found new evidence preserved in rocks on Mars that suggests the planet could have supported ancient life, as well as new evidence in the Martian atmosphere that relates to the search for current life on the Red Planet. While not necessarily evidence of life itself, these findings are a good sign for future missions exploring the planet’s surface and subsurface.

The new findings – “tough” organic molecules in three-billion-year-old sedimentary rocks near the surface, as well as seasonal variations in the levels of methane in the atmosphere – appear in the June 8 edition of the journal Science.

Organic molecules contain carbon and hydrogen, and also may include oxygen, nitrogen and other elements. While commonly associated with life, organic molecules also can be created by non-biological processes and are not necessarily indicators of life.

“With these new findings, Mars is telling us to stay the course and keep searching for evidence of life,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters, in Washington. “I’m confident that our ongoing and planned missions will unlock even more breathtaking discoveries on the Red Planet.”

“Curiosity has not determined the source of the organic molecules,” said Jen Eigenbrode of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who is lead author of one of the two new Science papers. “Whether it holds a record of ancient life, was food for life, or has existed in the absence of life, organic matter in Martian materials holds chemical clues to planetary conditions and processes.”

Although the surface of Mars is inhospitable today, there is clear evidence that in the distant past, the Martian climate allowed liquid water – an essential ingredient for life as we know it – to pool at the surface. Data from Curiosity reveal that billions of years ago, a water lake inside Gale Crater held all the ingredients necessary for life, including chemical building blocks and energy sources.

“The Martian surface is exposed to radiation from space. Both radiation and harsh chemicals break down organic matter,” said Eigenbrode. “Finding ancient organic molecules in the top five centimeters of rock that was deposited when Mars may have been habitable, bodes well for us to learn the story of organic molecules on Mars with future missions that will drill deeper.”

Seasonal Methane Releases

In the second paper, scientists describe the discovery of seasonal variations in methane in the Martian atmosphere over the course of nearly three Mars years, which is almost six Earth years. This variation was detected by Curiosity’s Sample Analysis at Mars (SAM) instrument suite.

Water-rock chemistry might have generated the methane, but scientists cannot rule out the possibility of biological origins. Methane previously had been detected in Mars’ atmosphere in large, unpredictable plumes. This new result shows that low levels of methane within Gale Crater repeatedly peak in warm, summer months and drop in the winter every year.

“This is the first time we’ve seen something repeatable in the methane story, so it offers us a handle in understanding it,” said Chris Webster of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, lead author of the second paper. “This is all possible because of Curiosity’s longevity. The long duration has allowed us to see the patterns in this seasonal ‘breathing.'”

Finding Organic Molecules

To identify organic material in the Martian soil, Curiosity drilled into sedimentary rocks known as mudstone from four areas in Gale Crater. This mudstone gradually formed billions of years ago from silt that accumulated at the bottom of the ancient lake. The rock samples were analyzed by SAM, which uses an oven to heat the samples (in excess of 900 degrees Fahrenheit, or 500 degrees Celsius) to release organic molecules from the powdered rock.

SAM measured small organic molecules that came off the mudstone sample – fragments of larger organic molecules that don’t vaporize easily. Some of these fragments contain sulfur, which could have helped preserve them in the same way sulfur is used to make car tires more durable, according to Eigenbrode.

The results also indicate organic carbon concentrations on the order of 10 parts per million or more. This is close to the amount observed in Martian meteorites and about 100 times greater than prior detections of organic carbon on Mars’ surface. Some of the molecules identified include thiophenes, benzene, toluene, and small carbon chains, such as propane or butene.

In 2013, SAM detected some organic molecules containing chlorine in rocks at the deepest point in the crater. This new discovery builds on the inventory of molecules detected in the ancient lake sediments on Mars and helps explains why they were preserved.

Finding methane in the atmosphere and ancient carbon preserved on the surface gives scientists confidence that NASA’s Mars 2020 rover and ESA’s (European Space Agency’s) ExoMars rover will find even more organics, both on the surface and in the shallow subsurface.

These results also inform scientists’ decisions as they work to find answers to questions concerning the possibility of life on Mars.

“Are there signs of life on Mars?” said Michael Meyer, lead scientist for NASA’s Mars Exploration Program, at NASA Headquarters. “We don’t know, but these results tell us we are on the right track.”

This work was funded by NASA’s Mars Exploration Program for the agency’s Science Mission Directorate (SMD) in Washington. Goddard provided the SAM instrument. JPL built the rover and manages the project for SMD.

As Solar Wind Blows, Our Heliosphere Balloons

What happens when the solar wind suddenly starts to blow significantly harder? A down-to-Earth answer would be that stronger solar winds could possibly damage a residential or commercial solar panel installation as well as disrupt satellites and electronic communications. But what about the wider picture beyond our Earth? What else can strong solar winds affect.

According to two recent studies, the boundaries of our entire solar system balloon outward-and an analysis of particles rebounding off of its edges will reveal its new shape.

In late 2014, NASA spacecraft detected a substantial change in the solar wind. For the first time in nearly a decade, the solar wind pressure-a combined measure of its speed and density-had increased by approximately 50 percent and remained that way for several years thereafter. Two years later, the Interstellar Boundary Explorer, or IBEX, spacecraft detected the first sign of the aftermath. Solar wind particles from the 2014 pressure increase had reached the edge of the heliosphere, neutralized themselves, and shot all the way back to Earth. And they had a story to tell.

In two recent articles, scientists used IBEX data along with sophisticated numerical models to understand what these rebounding atoms can tell us about the evolving shape and structure of our heliosphere, the giant bubble carved out by the solar wind.

“The results show that the 2014 solar wind pressure increase has already propagated from the Sun to the outer heliosphere, morphing and expanding our heliosphere’s boundaries in their closest direction,” said David McComas, the principal investigator for the IBEX mission at Princeton University in Princeton, New Jersey. “IBEX data pouring in over the next few years will let us chart the expansion and evolving structure of the other portions of the heliosphere’s outer boundaries.”

From the Sun to the edge of the solar system-and backAt the crux of the story are energetic neutral atoms-high-energy particles produced at the very edge of our solar system.

As the solar wind flows out from the Sun at supersonic speeds, it blows up a bubble known as the heliosphere. The heliosphere encases all the planets in our solar system and much of the space beyond them, separating the domain of our Sun from that of interstellar space.

But the solar wind’s journey from the Sun is not a smooth ride. On its way to the very edge of our heliosphere, known as the heliopause, the solar wind passes through distinct layers. The first of these is known as the termination shock.

Before passing the termination shock, the solar wind expands rapidly, largely unimpeded by outside material.

“But at the termination shock, roughly 9.3 billion miles away from us in every direction, the solar wind slows down abruptly. Beyond this point it continues to move outwards, but it is much hotter,” said Eric Zirnstein, lead author of one of the papers at Princeton.

Once beyond the termination shock, solar wind particles enter a special limbo zone known as the heliosheath. While the termination shock is essentially spherical, the edges of the heliosphere are thought to describe more of an arc around the Sun as it moves through space-closer to the Sun toward the front, and extending long behind it, not unlike a comet with a tail. Along these boundaries, solar wind particles mix with particles from interstellar space. Collisions are inevitable: the hot, electrically-charged solar wind particles bang into the slower, colder neutral atoms from interstellar space, stealing an electron and becoming neutral themselves.

“From there they go travelling ballistically through space, and some make it all the way back to Earth,” Zirnstein said. “These are the energetic neutral atoms that IBEX observes.”

In late 2016, when IBEX’s energetic neutral atom imager began to pick up an unusually strong signal, Professor McComas and his team set out to investigate its cause. Their findings are reported in an article published on March 20, 2018, in the Astrophysical Journal Letters.

The energetic neutral atoms were coming from about 30 degrees south of the interstellar upwind direction, where the heliosheath was known to be closest to Earth.

To quantify its connection to the 2014 solar wind pressure increase, McComas and his team turned to numerical simulations, working out how such a pressure increase could affect the energetic neutral atoms that IBEX observes.

“These types of simulations involve a model for the physics, which then gets turned into equations, which are in turn solved on a supercomputer,” said Jacob Heerikhuisen, a coauthor on both papers at the University of Alabama in Huntsville.

Using computer models, the team simulated an entire heliosphere, jolted it with a solar wind pressure increase, and let it run the numbers. The simulation completed a story only hinted at by the data.

According to the simulation, once the solar wind hits the termination shock it creates a pressure wave. That pressure wave continues on to the edge of the heliosphere and partially rebounds backwards, forcing particles to collide within the (now much denser) heliosheath environment that it just passed through. That’s where the energetic neutral atoms that IBEX observed were born.

The simulations provided a compelling case: IBEX was indeed observing the results of the 2014 solar wind pressure increase, more than two years later.

But the simulation didn’t stop there. It also revealed that the 2014 solar wind pressure increase would, over time, continue to blow up the heliosphere even further. Three years after the solar wind pressure increase-by the time the article was published-the termination shock, the inner bubble within the heliosphere, should expand by seven astronomical units, or seven times the distance from Earth to the Sun. The heliopause, the outer bubble, should expand by two astronomical units, with an additional two the following year.

In short, by cranking up the pressure of the solar wind, our heliosphere today is bigger than it was just a few years ago.

The heliosphere’s new shape

McComas and colleagues studied the very first signs of the 2014 solar wind pressure increase. But watching the data over the coming years may tell us even more-this time about the evolving shape of our heliosphere.

“There have been many studies, some from quite a while ago, predicting what the heliosphere shape should look like,” Zirnstein, the lead author of the paper, reports. “But it’s still very much up for debate in the modelling community. We’re hoping that the 2014 solar wind pressure increase could help with that.”

Using the same data and simulations used in the previous paper, Zirnstein and colleagues ran the clock forward, modeling the heliosphere eight years after the 2014 solar wind pressure increase. The results describe not only the past, but also model the future. The paper was published on May 30, 2018, in The Astrophysical Journal.

“What we think we should see in the near future is a ring, expanding across the sky, marking the change in energetic neutral atom flux over time,” said Zirnstein. “This ring expands away from the point of initial contact in the outer heliosphere, towards the directions of the heliotail.”

Although the initial signal detected by IBEX in 2016 was a solid circle, it won’t stay that way. As the 2014 solar wind reaches points of the heliopause further and further away, they take longer to bounce back, like an echo off of a far-away wall. The heliosphere’s rounded shape causes this echo to reflect back in the form of a ring.

But the key finding came from watching the ring as it expands.

In their simulation, Zirnstein and colleagues found that the precise rate at which the ring expands depended in part on the distances between the various layers of the heliosphere: the termination shock, the heliopause, and the part of the heliosheath where the energetic neutrals were produced. Zirnstein realized he had found a new way to measure the size and shape of the heliosphere.

“We could estimate the distances to the different boundaries of the heliosphere just by looking at this ring changing over time in the sky,” said Zirnstein.

Zirnstein and colleagues used their simulated heliosphere to run a test study. By measuring the rate of expansion of the ring (and plugging it into the right equations), they could accurately reproduce the distances to key structures within their simulated heliosphere. Since they knew what those distances were in their simulation, they could check their work-validating that the technique got the right answers and should be accurate when applied to the real heliosphere.

Deformities in the ring-deviations from a perfect circle-could also reveal asymmetries in the heliosphere’s overall shape. “It depends on how symmetric or asymmetric the heliosphere is,” Zirnstein added. “If the heliosphere was an ideal ‘comet shape,’ the ring should expand symmetrically over time. But in reality that’s probably not going to happen-we’ll have to wait and see what IBEX tell us.”

Zirnstein expressed excitement about the possibility of learning the true shape of the heliosphere.

“Over the next few years with more IBEX data, my hope is that we can build a 3-D picture of the shape of the heliosphere,” said Zirnstein.

The results of these two studies have important practical implications. “Connecting changes in the Sun with energetic neutral atom observations will help us understand long term changes in the hazardous conditions for space radiation environment-a sort of space climate as opposed to space weather,” McComas said. “As the solar wind blows more and less hard, and our solar bubble expands and contracts, which directly affects the amount of cosmic rays that can enter the heliosphere, potentially endangering astronauts on long duration spaceflights.”

But the results also underscore the incredible power of our closest star. Changes on the Sun, including the solar wind, have significant consequences extending billions of miles into space where, to date, only the two Voyager spacecraft have ever ventured. With techniques like energetic neutral atom imaging, we cannot just picture, but precisely measure these far-off portions of the heliosphere-our home in the galaxy.

How Do You Weigh A Galaxy? Especially The One You’re In?

Pinning down the mass of a galaxy may seem like an esoteric undertaking, but scientists think it holds the key to unraveling the nature of the elusive, yet-to-be-seen dark matter, and the fabric of our cosmos.

A new technique for estimating the mass of galaxies promises more reliable results, especially when applied to large datasets generated by current and future surveys, according to a research team led by Ekta Patel at the University of Arizona. Published in the Astrophysical Journal, the study is the first to combine the observed full three-dimensional motions of several of the Milky Way’s satellite galaxies with extensive computer simulations to obtain a high-accuracy estimate for the mass of our home galaxy.

Determining the mass of galaxies plays a crucial part in unraveling fundamental mysteries about the architecture of the universe. According to current cosmological models, a galaxy’s visible matter, such as stars, gas and dust, accounts for a mere 15 percent of its mass. The remaining 85 percent is believed to reside in dark matter, a mysterious component that never has been observed and whose physical properties remain largely unknown. The vast majority of a galaxy’s mass (mostly dark matter) is located in its halo, a vast, surrounding region containing few, if any, stars and whose shape is largely unknown.

In a widely accepted cosmological model, dark-matter filaments span the entire universe, drawing luminous (“regular”) matter with them. Where they intersect, gas and dust accumulate and coalesce into galaxies. Over billions of years, small galaxies merge to form into larger ones, and as those grow in size and their gravitational pull reaches farther and farther into space, they attract a zoo of other small galaxies, which then become satellite galaxies. Their orbits are determined by their host galaxy, much like the sun’s gravitational pull directs the movement of planets and bodies in the solar system.

“We now know that the universe is expanding,” says Patel, a fourth-year graduate student in the UA’s Department of Astronomy and Steward Observatory. “But when two galaxies come close enough, their mutual attraction is greater than the influence of the expanding universe, so they begin to orbit each other around a common center, like our Milky Way and our closest neighbor, the Andromeda Galaxy.”

Although Andromeda is approaching the Milky Way at 110 kilometers per second, the two won’t merge until about 4.5 billion years from now. According to Patel, tracking Andromeda’s motion is “equivalent to watching a human hair grow at the distance of the moon.”

Because it’s impossible to “weigh” a galaxy simply by looking at it — much less when the observer happens to be inside of it, as is the case with our Milky Way — researchers deduce a galaxy’s mass by studying the motions of celestial objects as they dance around the host galaxy, led by its gravitational pull. Such objects — also called tracers, because they trace the mass of their host galaxy — can be satellite galaxies or streams of stars created from the scattering of former galaxies that came too close to remain intact.

Unlike previous methods commonly used to estimate a galaxy’s mass, such as measuring its tracers’ velocities and positions, the approach developed by Patel and her co-authors uses their angular momentum, which yields more reliable results because it doesn’t change over time. The angular momentum of a body in space depends on both its distance and speed. Since satellite galaxies tend to move around the Milky Way in elliptical orbits, their speeds increase as they get closer to our galaxy and decrease as they get farther away. Because the angular momentum is the product of both position and speed, there is no net change regardless of whether the tracer is at its closest or farthest position in its orbit.

“Think of a figure skater doing a pirouette,” Patel says. “As she draws in her arms, she spins faster. In other words, her velocity changes, but her angular momentum stays the same over the whole duration of her act.”

The study, which Patel presents on Thursday, June 7, at the 232nd meeting of the of the American Astronomical Society in Denver, is the first to look at the full three-dimensional motions of nine of the Milky Way’s 50 known satellite galaxies at once and compare their angular momentum measurements to a simulated universe containing a total of 20,000 host galaxies that resemble our own galaxy. Together those simulated galaxies host about 90,000 satellite galaxies.

Patel’s team pinned down the Milky Way’s mass at 0.96 trillion solar masses. Previous estimates had placed our galaxy’s mass between 700 billion and 2 trillion solar masses. The results also reinforce estimates suggesting that the Andromeda Galaxy (M31) is more massive than our Milky Way.

The authors hope to apply their method to the ever-growing data as they become available by current and future galactic surveys such as the Gaia space observatory and LSST, the Large Synoptic Survey Telescope. According to co-author Gurtina Besla, an assistant professor of astronomy at the UA, constraints on the mass of the Milky Way will improve as new observations are obtained that clock the speed of more satellite galaxies, and as next-generation simulations will provide higher resolution, allowing scientists to get better statistics for the smallest mass tracers, the so-called ultra-faint galaxies.

“Our method allows us to take advantage of measurements of the speed of multiple satellite galaxies simultaneously to get an answer for what cold dark matter theory would predict for the mass of the Milky Way’s halo in a robust way,” Besla says. “It is perfectly suited to take advantage of the current rapid growth in both observational datasets and numerical capabilities.”

Thank The Moon For Earth’s Lengthening Day

A new study that reconstructs the deep history of our planet’s relationship to the moon shows that 1.4 billion years ago, a day on Earth lasted just over 18 hours. This is at least in part because the moon was closer and changed the way Earth spun around its axis.

“As the moon moves away, the Earth is like a spinning figure skater who slows down as they stretch their arms out,” explains Stephen Meyers, professor of geoscience at the University of Wisconsin-Madison and co-author of the study published this week [June 4, 2018] in the Proceedings of the National Academy of Sciences.

It describes a tool, a statistical method, that links astronomical theory with geological observation (called astrochronology) to look back on Earth’s geologic past, reconstruct the history of the solar system and understand ancient climate change as captured in the rock record.

“One of our ambitions was to use astrochronology to tell time in the most distant past, to develop very ancient geological time scales,” Meyers says. “We want to be able to study rocks that are billions of years old in a way that is comparable to how we study modern geologic processes.”

Earth’s movement in space is influenced by the other astronomical bodies that exert force on it, like other planets and the moon. This helps determine variations in Earth’s rotation around and wobble on its axis, and in the orbit Earth traces around the sun.

These variations are collectively known as Milankovitch cycles and they determine where sunlight is distributed on Earth, which also means they determine Earth’s climate rhythms. Scientists like Meyers have observed this climate rhythm in the rock record, spanning hundreds of millions of years.

But going back further, on the scale of billions of years, has proved challenging because typical geologic means, like radioisotope dating, do not provide the precision needed to identify the cycles. It’s also complicated by lack of knowledge of the history of the moon, and by what is known as solar system chaos, a theory posed by Parisian astronomer Jacques Laskar in 1989.

The solar system has many moving parts, including the other planets orbiting the sun. Small, initial variations in these moving parts can propagate into big changes millions of years later; this is solar system chaos, and trying to account for it can be like trying to trace the butterfly effect in reverse.

Last year, Meyers and colleagues cracked the code on the chaotic solar system in a study of sediments from a 90 million-year-old rock formation that captured Earth’s climate cycles. Still, the further back in the rock record he and others have tried to go, the less reliable their conclusions.

For instance, the moon is currently moving away from Earth at a rate of 3.82 centimeters per year. Using this present day rate, scientists extrapolating back through time calculated that “beyond about 1.5 billion years ago, the moon would have been close enough that its gravitational interactions with the Earth would have ripped the moon apart,” Meyers explains. Yet, we know the moon is 4.5 billion years old.

So, Meyers sought a way to better account for just what our planetary neighbors were doing billions of years ago in order to understand the effect they had on Earth and its Milankovitch cycles. This was the problem he brought with him to a talk he gave at Columbia University’s Lamont-Doherty Earth Observatory while on sabbatical in 2016.

In the audience that day was Alberto Malinverno, Lamont Research Professor at Columbia. “I was sitting there when I said to myself, ‘I think I know how to do it! Let’s get together!'” says Malinverno, the other study co-author. “It was exciting because, in a way, you dream of this all the time; I was a solution looking for a problem.”

The two teamed up to combine a statistical method that Meyers developed in 2015 to deal with uncertainty across time — called TimeOpt — with astronomical theory, geologic data and a sophisticated statistical approach called Bayesian inversion that allows the researchers to get a better handle on the uncertainty of a study system.

They then tested the approach, which they call TimeOptMCMC, on two stratigraphic rock layers: the 1.4 billion-year-old Xiamaling Formation from Northern China and a 55 million-year-old record from Walvis Ridge, in the southern Atlantic Ocean.

With the approach, they could reliably assess from layers of rock in the geologic record variations in the direction of the axis of rotation of Earth and the shape of its orbit both in more recent time and in deep time, while also addressing uncertainty. They were also able to determine the length of day and the distance between Earth and the moon.

“In the future, we want to expand the work into different intervals of geologic time,” says Malinverno.

The study complements two other recent studies that rely on the rock record and Milankovitch cycles to better understand Earth’s history and behavior.

A research team at Lamont-Doherty used a rock formation in Arizona to confirm the remarkable regularity of Earth’s orbital fluctuations from nearly circular to more elliptical on a 405,000 year cycle. And another team in New Zealand, in collaboration with Meyers, looked at how changes in Earth’s orbit and rotation on its axis have affected cycles of evolution and extinction of marine organisms called graptoloids, going back 450 million years.

“The geologic record is an astronomical observatory for the early solar system,” says Meyers. “We are looking at its pulsing rhythm, preserved in the rock and the history of life.”

Guatemala Volcano: Dozens Die as Fuego Volcano Erupts

Guatemala’s most violent volcanic eruption in more than a century has killed at least 25 people.

Another 46 people are missing, the country’s disaster agency says. Villages on the slopes of Fuego volcano were buried in volcanic ash, mud and rocks as the volcano erupted for 16 and a half hours on Sunday.

Pyroclastic flows, which are fast-moving mixtures of very hot gas and volcanic matter, rushed down the mountainside and engulfed villages.

President Jimmy Morales has declared three days of national mourning. A further pyroclastic flow on Monday sparked alarm.

The official death toll is 25 but volunteer firefighters say they have found another five bodies, according to local media.

A powerful earthquake has also hit the Guatemalan coast, though there are no reports of damage so far.

What has happened?
Fuego, about 40km (25 miles) south-west of the capital Guatemala City, spewed rock, gas and ash into the sky. Fast-moving flows hit villages, killing people inside their homes.

Sergio Cabañas, head of the country’s National Disaster Management Agency (Conred), said the town of El Rodeo had been “buried”.

Other towns affected include Alotenango and San Miguel Los Lotes. Rescuers are still trying to reach a number of villages and the death toll is expected to rise.

Temporary shelters have been set up for about 3,000 residents who have been evacuated. Efrain Gonzalez, who fled El Rodeo with his  wife and one-year-old daughter, said he had had to leave behind his two older children, aged four and ten, trapped in the family home.

Local resident Ricardo Reyes was forced to abandon his home: “The only thing we could do was run with my family and we left our possessions in the house. Now that all the danger has passed, I came to see how our house was – everything is a disaster.”

A total of about 1.7 million people have been affected in four regions. The country’s main airport has now reopened. Officials have advised people to wear masks as protection against falling ash.

How exceptional was the eruption?
Fuego is one of Latin America’s most active volcanoes. A major eruption devastated nearby farms in 1974, but no deaths were recorded.

Another eruption in February this year sent ash 1.7km (1.1 mile) into the sky. Sunday’s event was on a much greater scale.

This eruption is Guatemala’s deadliest such event since 1902, when an eruption of the Santa Maria volcano killed thousands of people.

Guatemala’s national institute of volcanology, Insivumeh, told people to keep away from the affected ravines as there is a possibility of “a reactivation”.

The institute also warned of the possibility of lahars – when water mixes with volcanic deposits forming a destructive debris flow – which could affect villages and hamlets to the south, south-west and south-east.

Hawaii’s Kilauea Volcano Eruption Enters New Phase As Crater Falls Quiet

As lava continued to pour vigorously from the ground through fissures at the foot of Kilauea Volcano, the month-old eruption on Hawaii’s Big Island has entered a new, seemingly calmer phase inside the summit crater, government scientists have said.

But vulcanologists monitoring and measuring Kilauea’s every move during the past four weeks hastened to add the latest change in the volcano’s behaviour, while undoubtedly significant, leaves them uncertain about what will follow.

The summit crater, which began ejecting ash and volcanic rock in periodic, daily eruptions in mid-May, has largely fallen quiet since Wednesday, Kyle Anderson, a US Geological Survey (USGS) geophysicist, told reporters in a conference call.

The apparent reason, newly revealed in footage recorded by drone aircraft flown over the summit, is that tons of rocky material shaken loose from the inside walls of the crater vent have plugged up the bottom of the void, Anderson said.

What happens next is unknown.

“It’s possible that new explosions will blast through the rubble at the bottom of the vent, and these may or may not be larger than previous explosions,” he said. “It’s also possible that the vent could become permanently blocked, ending the explosions entirely.”

In any case, the volcano’s behaviour ultimately hinges on the ebb and flow of huge rivers of molten rock called magma, the term for lava while it remains underground.

The steady collapse of the crater’s inner walls, caused by magma draining out of the summit and oozing downslope under the volcano’s surface, has also greatly enlarged the mouth of the vent, which has grown in size from about 12 acres (4.9 hectares) to 120 acres (48.5 hectares), Anderson said.

At the same time, the Kilauea summit itself has sunken, or subsided, by at least 5 feet (1.50 meters) in elevation as the magma level continues to drop, exerting tremendous pressure on seismic faults to create numerous earthquakes, mostly small tremors, in the immediate vicinity.

Although the summit crater of Kilauea has fallen silent for the moment, many of the two dozen volcanic fissures running through populated areas on its eastern flank continued to spout and ooze lava and toxic gases that prompted the evacuation of some 2,500 residents. At least 75 homes — most of them in the hard-hit community of Leilani Estates — have been devoured by streams of red-hot molten rock creeping across the landscape since May 3. Lava flows also have knocked out power and telephone lines in the region, disrupting communications.

Another issue has been the occurrence of a phenomenon called Pele’s hair — fine, glass-like fibres of volcanic material produced by fountains of lava and carried aloft by the wind. The filament, named for the mythical goddess of volcanoes, can cause skin, eye and respiratory irritation like fibreglass.

Residents have been warned to avoid exposure to Pele’s hair, one of several airborne volcano hazards including emissions of sulphur dioxide gas, wind-blown ash and noxious clouds of laze – a term combining the words “lava” and “haze” – formed when lava reacts with seawater to form a mix of acid fumes, steam and glass-like specks.

The latest upheaval of Kilauea, one of the world’s most active volcanoes, comes on the heels of an earlier eruption cycle that began in 1983 and continued almost nonstop for 35 years, destroying 215 dwellings and other structures.