Hurricane Fabio Forecast to Rapidly Intensify; Record-Earliest Eastern Pacific ‘F’ Storm

Hurricane Fabio is expected to quickly intensify into a major hurricane, the third of the eastern Pacific hurricane season, and has already become the record-earliest “F” storm in that active basin in 2018.

Fabio is currently more than 600 miles south-southwest of the southern tip of Mexico’s Baja California Peninsula, in the eastern Pacific Ocean.

On Monday afternoon, microwave satellite imagery indicated Fabio’s western eyewall was somewhat open, but the latest visible imagery suggested the eyewall was finally closing off, despite the presence of a dry slot wrapping around the western and southern portions of the inner core.

The National Hurricane Center said rapid intensification – an increase in the peak sustained winds of at least 35 mph in 24 hours or less – is likely into Tuesday.

Fabio is no direct threat to land, expected to continue west-northwestward, but it could reach Category 3 status by Tuesday before weakening over colder water.

Fabio may eventually produce some larger swells that may affect the Pacific beaches of Mexico, particularly the Baja Peninsula, as well as some Southern California beaches later in the week.

A Record-Early ‘F’

On Sunday, Fabio became the earliest sixth eastern Pacific named storm on record, topping the previous earliest “F” storm by two days, according to Colorado State University tropical scientist Dr. Phil Klotzbach.

Fabio could become the third major – Category 3 or stronger – hurricane of this young eastern Pacific hurricane season. In early to mid-June, Aletta, then Bud each became Category 4 hurricanes in just over three days’ time.

Overall, eastern Pacific tropical activity was running about two to three weeks ahead of the average pace, as tracked by the ACE index, according to Klotzbach.

In contrast to the highly sheared, suppressed Atlantic Basin, wind shear has remained low, and sea-surface temperatures have generally been warmer-than-average over the tropical eastern Pacific Basin, helping to support the development of these six named storms in less than a month’s time.

Study Reveals Secret Origins Of Asteroids And Meteorites

Most asteroids and meteorites originate from the splintering of a handful of minor planets formed during the infancy of our solar system, a new study shows.

A study appearing online today in Nature Astronomy found at least 85 percent of 200,000 asteroids in the inner asteroid belt—the main source of Earth’s meteorites—originate from five or six ancient minor planets. The other 15 percent may also trace their origins to the same group of primordial bodies, said Stanley Dermott, lead author and a theoretical astronomer at the University of Florida.

The discovery is important for understanding the materials that shaped our own rocky planet, Dermott said.

The finding provides a more robust understanding of the evolutionary history of asteroids and the materials that form them—information Dermott says could prove essential to protecting the Earth and ourselves from meteorites the size of the Statue of Liberty and asteroids more powerful than atomic bombs.

“These large bodies whiz by the Earth, so of course we’re very concerned about how many of these there are and what types of material are in them,” said Dermott, professor emeritus in UF’s College of Liberal Arts and Sciences. “If ever one of these comes towards the earth, and we want to deflect it, we need to know what its nature is.”

Dermott’s team demonstrated that the type of orbit an asteroid has depends on the size of the asteroid. This finding suggests that differences in meteorites found on Earth appear because of the evolutionary changes that occurred inside a few large, precursor bodies that existed more than four billion years ago, Dermott said.

“I wouldn’t be surprised if we eventually trace the origins of all asteroids in the main asteroid belt, not just those in the inner belt, to a small number of known parent bodies,” Dermott said.

Building knowledge of the evolutionary history of bodies that formed our early solar system helps theoretical astronomers answer questions related to where planets like our own might exist in the universe, Dermott said. But, first, he said we have to understand the processes that produced the planet we live on.

Researchers See Beam Of Light From First Confirmed Neutron Star Merger Emerge From Behind Sun

A research team led by astronomers at the University of Warwick had to wait over 100 days for the sight of the first of confirmed neutron star merger to remerge from behind the glare of the Sun.

They were rewarded with the first confirmed visual sighting of a jet of material that was still streaming out from merged star exactly 110 days after that initial cataclysmic merger event was first observed. Their observations confirm a key prediction about the aftermath of neutron star mergers.

The binary neutron star merger GW170817 occurred 130 million light years away in a galaxy named NGC 4993. It was detected in August 2017 by the Advanced Laser Interferometer Gravitational-Wave Observatory (Adv-LIGO), and by Gamma Ray Burst (GRB) observations, and then became the first ever neutron star merger to be observed and confirmed by visual astronomy.

After a few weeks the merged star then passed behind the glare of our sun leaving it effectively hidden from astronomers until it remerged from that glare 100 days after the merger event. It was at that point that the University of Warwick research team were able to use the Hubble Space Telescope to see the star was still generating a powerful beam of light in a direction that, while off centre to the Earth, was starting to spread out in our direction.

Their research has just been published in a paper entitled: “The optical afterglow of the short gamma-ray burst associated with GW170817” in Nature Astronomy’s website at 4pm UK time on Monday 02 July 2018.

The lead author of the paper, Dr. Joe Lyman from the University of Warwick’s Department of Physics, said:

“Early on, we saw visible light powered by radioactive decay of heavy elements, over a hundred days later and this has gone, but now we see a jet of material, ejected at an angle to us, but at almost of the speed of light. This is quite different than some people have suggested, that the material wouldn’t come out in a jet, but in all directions.”

Professor Andrew Levan from the University of Warwick’s Department of Physics, another of the papers leading authors added:

“If we’d looked straight down this beam we’d have seen a really powerful burst of gamma-ray. This means that it is quite likely that every neutron star that mergers actually creates a gamma-ray burst, but we only see a small fraction of them because the jet doesn’t line up all that often. Gravitational waves are a whole new way to find this kind of event, and they might be more common than we think.”

These observations confirm the prediction made by the second author of the paper, Dr. Gavin Lamb from the University of Leicester’s Department of Physics and Astronomy, said that these types of events will reveal the structure of these jets of material travelling close to the speed of light:

“The behaviour of the light from these jets, how it brightens and fades, can be used to determine the velocity of the material throughout the jet. As the afterglow brightens we are seeing deeper into the jet structure and probing the fastest components. This will help us understand how these jets of material, travelling close to the speed of light, are formed and how they are accelerated to these phenomenal velocities.”

‘Cataclysmic’ Collision Shaped Uranus’ Evolution

Uranus was hit by a massive object roughly twice the size of Earth that caused the planet to tilt and could explain its freezing temperatures, according to new research.

Astronomers at Durham University, UK, led an international team of experts to investigate how Uranus came to be tilted on its side and what consequences a giant impact would have had on the planet’s evolution.

The team ran the first high-resolution computer simulations of different massive collisions with the ice giant to try to work out how the planet evolved.

The research confirms a previous study which said that Uranus’ tilted position was caused by a collision with a massive object—most likely a young proto-planet made of rock and ice—during the formation of the solar system about 4 billion years ago.

The simulations also suggested that debris from the impactor could form a thin shell near the edge of the planet’s ice layer and trap the heat emanating from Uranus’ core. The trapping of this internal heat could in part help explain Uranus’ extremely cold temperature of the planet’s outer atmosphere (-216 degrees Celsius, -357 degrees Fahrenheit), the researchers said.

Lead author Jacob Kegerreis, Ph.D. researcher in Durham University’s Institute for Computational Cosmology, said: “Uranus spins on its side, with its axis pointing almost at right angles to those of all the other planets in the solar system. This was almost certainly caused by a giant impact, but we know very little about how this actually happened and how else such a violent event affected the planet.

“We ran more than 50 different impact scenarios using a high-powered super computer to see if we could recreate the conditions that shaped the planet’s evolution.

“Our findings confirm that the most likely outcome was that the young Uranus was involved in a cataclysmic collision with an object twice the mass of Earth, if not larger, knocking it on to its side and setting in process the events that helped create the planet we see today.”

There has been a question mark over how Uranus managed to retain its atmosphere when a violent collision might have been expected to send it hurtling into space.

According to the simulations, this can most likely be explained by the impact object striking a grazing blow on the planet. The collision was strong enough to affect Uranus’ tilt, but the planet was able to retain the majority of its atmosphere.

The research could also help explain the formation of Uranus’ rings and moons, with the simulations suggesting the impact could jettison rock and ice into orbit around the planet. This rock and ice could have then clumped together to form the planet’s inner satellites and perhaps altered the rotation of any pre-existing moons already orbiting Uranus.

The simulations show that the impact could have created molten ice and lopsided lumps of rock inside the planet. This could help explain Uranus’ tilted and off-centre magnetic field.

Uranus is similar to the most common type of exoplanets—planets found outside of our solar system—and the researchers hope their findings will help explain how these planets evolved and understand more about their chemical composition.

First Confirmed Image Of Newborn Planet Caught With ESO’s VLT

Astronomers led by a group at the Max Planck Institute for Astronomy in Heidelberg, Germany have captured a spectacular snapshot of planetary formation around the young dwarf star PDS 70. By using the SPHERE instrument on ESO’s Very Large Telescope (VLT) — one of the most powerful planet-hunting instruments in existence — the international team has made the first robust detection of a young planet, named PDS 70b, cleaving a path through the planet-forming material surrounding the young star.

The SPHERE instrument also enabled the team to measure the brightness of the planet at different wavelengths, which allowed properties of its atmosphere to be deduced.

The planet stands out very clearly in the new observations, visible as a bright point to the right of the blackened centre of the image. It is located roughly three billion kilometres from the central star, roughly equivalent to the distance between Uranus and the Sun. The analysis shows that PDS 70b is a giant gas planet with a mass a few times that of Jupiter. The planet’s surface has a temperature of around 1000°C, making it much hotter than any planet in our own Solar System.

The dark region at the centre of the image is due to a coronagraph, a mask which blocks the blinding light of the central star and allows astronomers to detect its much fainter disc and planetary companion. Without this mask, the faint light from the planet would be utterly overwhelmed by the intense brightness of PDS 70.

“These discs around young stars are the birthplaces of planets, but so far only a handful of observations have detected hints of baby planets in them,” explains Miriam Keppler, who lead the team behind the discovery of PDS 70’s still-forming planet. “The problem is that until now, most of these planet candidates could just have been features in the disc.”

The discovery of PDS 70’s young companion is an exciting scientific result that has already merited further investigation. A second team, involving many of the same astronomers as the discovery team, including Keppler, has in the past months followed up the initial observations to investigate PDS 70’s fledgling planetary companion in more detail. They not only made the spectacularly clear image of the planet shown here, but were even able to obtain a spectrum of the planet. Analysis of this spectrum indicated that its atmosphere is cloudy.

PDS 70’s planetary companion has sculpted a transition disc — a protoplanetary disc with a giant “hole” in the centre. These inner gaps have been known about for decades and it has been speculated that they were produced by disc-planet interaction. Now we can see the planet for the first time.

“Keppler’s results give us a new window onto the complex and poorly-understood early stages of planetary evolution,” comments André Müller, leader of the second team to investigate the young planet. “We needed to observe a planet in a young star’s disc to really understand the processes behind planet formation.” By determining the planet’s atmospheric and physical properties, the astronomers are able to test theoretical models of planet formation.

This glimpse of the dust-shrouded birth of a planet was only possible thanks to the impressive technological capabilities of ESO’s SPHERE instrument, which studies exoplanets and discs around nearby stars using a technique known as high-contrast imaging — a challenging feat. Even when blocking the light from a star with a coronagraph, SPHERE still has to use cleverly devised observing strategies and data processing techniques to filter out the signal of the faint planetary companions around bright young stars at multiple wavelengths and epochs.

Thomas Henning, director at the Max Planck Institute for Astronomy and leader of the teams, summarises the scientific adventure: “After more than a decade of enormous efforts to build this high-tech machine, now SPHERE enables us to reap the harvest with the discovery of baby planets!”

Stability Of Earth: Scientists Propose Solution To ‘Gaia Puzzle’

Scientists may have solved a long-standing puzzle over why conditions on Earth have remained stable enough for life to evolve over billions of years. The ‘Gaia’ hypothesis proposed that living things interacting with inorganic processes somehow keep the planet in a state where life can persist — despite threats such as a brightening sun, volcanoes and meteorite strikes.

The puzzle of how this might work has divided experts for decades, but a team led by scientists from the University of Exeter have proposed a solution. They say stability could come from “sequential selection” in which situations where life destabilises the environment tend to be short-lived and result in further change until a stable situation emerges, which then tends to persist.

Once this happens, the system has more time to acquire further traits that help to stabilise and maintain it — a process known as “selection by survival alone.”

“We can now explain how the Earth has accumulated stabilising mechanisms over the past 3.5 billion years of life on the planet,” said Professor Tim Lenton, of the University of Exeter.

“The central problem with the original Gaia hypothesis was that evolution via natural selection cannot explain how the whole planet came to have stabilising properties over geologic timescales.”

“Instead, we show that at least two simpler mechanisms work together to give our planet with life self-stabilising properties.”

He added: “Our findings can help explain how we came to be here to wonder about this question in the first place.”

Professor Dave Wilkinson, of the University of Lincoln, who was also involved in the research, added: “I have been involved in trying to figure out how

Gaia might work for over 20 years — finally it looks like a series of promising ideas are all coming together to provide the understanding I have been searching for.”

Dr James Dyke, of the University of Southampton, also an author on the paper, said: “As well as being important for helping to estimate the probability of complex life elsewhere in the universe, the mechanisms we identify may prove crucial in understanding how our home planet may respond to drivers such as human-produced climate change and extinction events.”

Creating transformative solutions to the global changes that humans are now causing is a key focus of the University of Exeter’s new Global Systems Institute, directed by Professor Lenton, who said: “We can learn some lessons from Gaia on how to create a flourishing, sustainable, stable future for 9-11 billion people this century.”

The Gaia hypothesis, first put forward by James Lovelock in the 1970s, was named after the deity who personified the Earth in Greek mythology.

Hawaii Kilauea Volcano Update: USGS Map, Summit Collapses Continue, Lava Flowing From Fissure 8

People on the Big Island of Hawaii have been dealing with the eruptions and collapse events from the Kilauea volcano for almost two months now. Activity at the summit of the volcano continues with collapse events, and lava is still flowing from the island’s Fissure 8.

Friday morning in Hawaii, there was a collapse explosion that sent a plume of volcanic material into the sky and drifting southwest of the summit according to the United States Geological Survey. But the levels of sulfur dioxide, the gas that Kilauea releases, were actually down from where they had been when the volcano first started erupting.

The next morning, there was another collapse event. That event occurred after about 15 hours of elevated seismic activity around the summit. It resulted in a steam plume that went about 500 feet in the air, similar to the previous explosion.

After the explosive events, the seismicity in the area dropped significantly by about two-thirds. Prior to the events, there were about 30 to 35 earthquakes an hour resulting from the volcanic activity, after the collapse events that dropped to 10 or less for a short period before the activity increased again, according to the USGS.

In addition to the collapse events that have resulted in the loss of a parking lot and a GPS station for measuring collapse, the lava that has already claimed hundreds of homes is still flowing.

Fissure 8 is still erupting lava and flowing into a channel. The channel does occasionally experience small and temporary overflows, according to the USGS. The spatter cone of the fissure was reaching about 155 feet tall as of Saturday morning. The lava that was coming from the fissure was flowing down to the ocean, where it had filled the entire Kapoho Bay and moved onto the Kapoho Beach Lots, said the USGS.

The lava was entering the ocean and causing a dangerous byproduct called laze, short for lava haze, that officials were warning people to avoid. The plume can damage the lungs and the skin as well as the eyes. The point where the lava enters the ocean can also experience small explosions, the USGS warned.

Around Fissure 8, volcanic glass including Pele’s hair was falling, more particles that residents were asked to avoid due to the irritation they can cause.