Exoplanets Where Life Could Develop As It Did On Earth

Scientists have identified a group of planets outside our solar system where the same chemical conditions that may have led to life on Earth exist.

The researchers, from the University of Cambridge and the Medical Research Council Laboratory of Molecular Biology (MRC LMB), found that the chances for life to develop on the surface of a rocky planet like Earth are connected to the type and strength of light given off by its host star.

Their study, published in the journal Science Advances, proposes that stars which give off sufficient ultraviolet (UV) light could kick-start life on their orbiting planets in the same way it likely developed on Earth, where the UV light powers a series of chemical reactions that produce the building blocks of life.

The researchers have identified a range of planets where the UV light from their host star is sufficient to allow these chemical reactions to take place, and that lie within the habitable range where liquid water can exist on the planet’s surface.

“This work allows us to narrow down the best places to search for life,” said Dr Paul Rimmer, a postdoctoral researcher with a joint affiliation at Cambridge’s Cavendish Laboratory and the MRC LMB, and the paper’s first author. “It brings us just a little bit closer to addressing the question of whether we are alone in the universe.”

The new paper is the result of an ongoing collaboration between the Cavendish Laboratory and the MRC LMB, bringing together organic chemistry and exoplanet research. It builds on the work of Professor John Sutherland, a co-author on the current paper, who studies the chemical origin of life on Earth.

In a paper published in 2015, Professor Sutherland’s group at the MRC LMB proposed that cyanide, although a deadly poison, was in fact a key ingredient in the primordial soup from which all life on Earth originated.

In this hypothesis, carbon from meteorites that slammed into the young Earth interacted with nitrogen in the atmosphere to form hydrogen cyanide. The hydrogen cyanide rained to the surface, where it interacted with other elements in various ways, powered by the UV light from the sun. The chemicals produced from these interactions generated the building blocks of RNA, the close relative of DNA which most biologists believe was the first molecule of life to carry information.

In the laboratory, Sutherland’s group recreated these chemical reactions under UV lamps and generated the precursors to lipids, amino acids, and nucleotides, all of which are essential components of living cells. Scientific research on this scale needs to be done with the best tools and equipment available, researchers need to look around for scientific equipment that compliments what they are doing, so that the results from these experiments are factual and accurate, making them able to compare future studies in this field.

“I came across these earlier experiments, and as an astronomer, my first question is always what kind of light are you using, which as chemists they hadn’t really thought about,” said Rimmer. “I started out measuring the number of photons emitted by their lamps, and then realised that comparing this light to the light of different stars was a straightforward next step.”

The two groups performed a series of laboratory experiments to measure how quickly the building blocks of life can be formed from hydrogen cyanide and hydrogen sulphite ions in water when exposed to UV light. They then performed the same experiment in the absence of light.

“There is chemistry that happens in the dark: it’s slower than the chemistry that happens in the light, but it’s there,” said senior author Professor Didier Queloz, also from the Cavendish Laboratory. “We wanted to see how much light it would take for the light chemistry to win out over the dark chemistry.”

The same experiment run in the dark with the hydrogen cyanide and the hydrogen sulphite resulted in an inert compound which could not be used to form the building blocks of life, while the experiment performed under the lights did result in the necessary building blocks.

The researchers then compared the light chemistry to the dark chemistry against the UV light of different stars. They plotted the amount of UV light available to planets in orbit around these stars to determine where the chemistry could be activated.

They found that stars around the same temperature as our sun emitted enough light for the building blocks of life to have formed on the surfaces of their planets. Cool stars, on the other hand, do not produce enough light for these building blocks to be formed, except if they have frequent powerful solar flares to jolt the chemistry forward step by step. Planets that both receive enough light to activate the chemistry and could have liquid water on their surfaces reside in what the researchers have called the abiogenesis zone.

Among the known exoplanets which reside in the abiogenesis zone are several planets detected by the Kepler telescope, including Kepler 452b, a planet that has been nicknamed Earth’s ‘cousin’, although it is too far away to probe with current technology. Next-generation telescopes, such as NASA’s TESS and James Webb Telescopes, will hopefully be able to identify and potentially characterise many more planets that lie within the abiogenesis zone.

Of course, it is also possible that if there is life on other planets, that it has or will develop in a totally different way than it did on Earth.

“I’m not sure how contingent life is, but given that we only have one example so far, it makes sense to look for places that are most like us,” said Rimmer. “There’s an important distinction between what is necessary and what is sufficient. The building blocks are necessary, but they may not be sufficient: it’s possible you could mix them for billions of years and nothing happens. But you want to at least look at the places where the necessary things exist.”

According to recent estimates, there are as many as 700 million trillion terrestrial planets in the observable universe. “Getting some idea of what fraction have been, or might be, primed for life fascinates me,” said Sutherland. “Of course, being primed for life is not everything and we still don’t know how likely the origin of life is, even given favourable circumstances — if it’s really unlikely then we might be alone, but if not, we may have company.”

The research was funded by the Kavli Foundation and the Simons Foundation.

Solar Probe Set To Launch Into The Sun’s Scorching ‘Red Zone’

On Aug. 6, the Parker Solar Probe will launch from the Kennedy Space Center in Florida for one extremely intense mission: to fly closer to the Sun than any spacecraft before.

The probe will fly through and study the sun’s atmosphere, where it will face punishing heat and radiation. At its closest, it will come within 6.1 million kilometres of the Sun.

“A lot of people don’t think that’s particularly close,” said Nicola Fox, the project scientist for the Parker Solar Probe. “But if I put the Sun and the Earth in the end zones in a football field, the Parker Solar Probe will be on the four-yard line in the red zone, knocking on the door for a touchdown.”

Named after astrophysicist Eugene Parker — the first living researcher to receive such an honour — the probe will travel in the Sun’s outer atmosphere, called the corona. Because it isn’t very dense, the corona is difficult to study. The only time we can see it is during a solar eclipse, or with a specially made instrument called a coronagraph, which blocks out the Sun’s light.

While the Sun is vital to our existence, it’s not really our ally. It is a roiling, churning ball of gas and charged particles that generates a solar wind that influences our planet — and not always in a good way.

Solar flares are one example. These eruptions occur in cooler regions of the sun, called sunspots. Just like Earth, the sun has a magnetic field. But unlike Earth, different regions of the Sun rotate at different speeds. This can cause magnetic loops to become tangled. After twisting tighter and tighter, the stored energy is released as a solar flare.

These are often followed by coronal mass ejections, where charged particles (plasma) erupt and travel at increased speeds along the solar wind.

These events can cause radio blackouts and even knock out power grids. One of the most well known is the power outage that left six million people shivering in the dark in Quebec in March 1989.

“It’s of fundamental importance for us to be able to predict space weather much like we predict weather here on Earth,” said Alex Young, a solar scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md., during a news conference Friday.

With the Parker Solar Probe mission, scientists want to better understand these phenomena: the sun’s corona, magnetic field, solar flares and the wildly fast solar wind.

“The solar wind goes from a steady breeze to a supersonic flow from the corona to millions of miles an hour,” Young said. “So why does this happen? What is going on here?”

The way the sun works is counterintuitive.

“It’s a very strange, unfamiliar environment for us. We’re used to the idea that, if I’m standing next to a campfire and I walk away from it, it gets cooler. But this is not what happens on the sun,” Young said. “As we go from the surface of the sun, which is 10,000 degrees, and quickly move up into the corona, we find ourselves quickly at millions of degrees.

This mystery “drives not only how this star works, our sun, but also all the stars in the universe,” Young said.

Why it won’t melt
Clearly, a spacecraft the size of a small car flying that close to the sun needs some serious protection.

The Parker Solar Probe actually won’t be facing the million-degree temperatures that the sun generates. It’s important to note there is a difference between temperature and heat. Temperature measures how fast particles are moving, while heat measures the total amount of energy that is transferred. The particles may be moving fast but if there are few of them they won’t transfer that heat.

Scientists explain it this way: It’s the difference between putting your hand in an oven (not touching anything) and in a pot of hot water. Your hand would burn in the water because it is in contact with many more particles compared to in the oven, where it could withstand the same temperature for a longer duration.

Since the sun’s corona isn’t very dense, the spacecraft won’t be interacting with many particles.

That being said, it will still have to endure temperatures near 1,400 C.

For that, it is equipped with a white ceramic shield — built out of reinforced carbon and carbon foam — that will only ever face the sun.The solar arrays that provide power to the probe retract upon each close approach, so little is exposed to the sun’s powerful rays, while a cooling system also helps to prevent the spacecraft from frying.

It takes eight minutes for the sun’s light to reach us, and the same goes for any message from the probe. Being so close to the sun, the autonomous spacecraft needs to be able to make quick decisions.

Getting there
If all goes well, the Parker Solar Probe will launch on Aug. 6 and arrive safely on Nov. 1. It will then begin its 88-day orbit of the sun that will take it out past Venus. At its closest approach, which will be in 2024, it will be travelling 692,000 km/h.

The probe will complete 24 orbits with seven gravity assists around Venus that will help it pick up speed.

This isn’t the first mission to study the sun. NASA has launched several, including the ongoing Solar Dynamics Observatory and the Solar and Heliospheric Observatory.

Two other spacecraft have had close flybys, though not nearly as close as the Parker Solar Probe’s route. In 1974, Helios 1 passed within 45 million kilometres of the sun’s surface, and Helios 2 within 43.4 million kilometres two years later.

“We’ve done so much science by looking at the star. We’ve looked at it every single different way you can imagine. We’ve looked at it in every wavelength, we’ve travelled in beyond the orbit of Mercury even,” Fox said.

“But we need to get into this action region. Into this region where all these mysteries are really occurring. And that’s why we’re doing this kind of daring journey.”

Solar Flares Disrupted Radio Communications During September 2017 Atlantic Hurricanes

An unlucky coincidence of space and Earth weather in early September 2017 caused radio blackouts for hours during critical hurricane emergency response efforts, according to a new study in Space Weather, a journal of the American Geophysical Union. The new research, which details how the events on the Sun and Earth unfolded side-by-side, could aid in the development of space weather forecasting and response, according to the study’s authors.

On September 6, three hurricanes advanced in a menacing line across the Atlantic Ocean. Category 5 Hurricane Irma ravaged Barbuda in the Caribbean’s Leeward Islands in the early morning and churned onward to St. Marin, St. Barthelemy, Anguilla and the Virgin Islands, causing massive damage. Tropical Storm Katia hovered in the Gulf of Mexico and Tropical Storm Jose approached from the open ocean. Both were upgraded to hurricane status later that day.

On the surface of the Sun, 150 million kilometers (93 million miles) away, another storm was brewing. A class X-2.2 and major class X-9.3 solar flare erupted on the morning of September 6 at about 8 a.m. local time. NOAA’s Space Weather Prediction Center warned of a strong radio blackout over most the sunlit side of Earth, including the Caribbean.

Amateur radio operators assisting with emergency communications in the islands reported to the Hurricane Watch Net that radio communications went down for most of the morning and early afternoon on September 6 because of the Sun’s activity, according to the new study. French civil aviation reported a 90-minute loss of communication with a cargo plane, according to the study’s authors, and NOAA reported on September 14 that high frequency radio, used by aviation, maritime, ham radio, and other emergency bands, was unavailable for up to eight hours on September 6.

Another large class-X flare erupted from the Sun on September 10, disrupting radio communication for three hours. The disruption came as the Caribbean community coped with Category 4 Hurricane Jose’s brush with the Leeward Islands and the Bahamas, and Irma’s passage over Little Inagua in the Bahamas on September 8 and passage over Cuba on September 9.

“Space weather and Earth weather aligned to heighten an already tense situation in the Caribbean,” said Rob Redmon, a space scientist with NOAA’s National Centers for Environmental Information in Boulder, Colorado, and the lead author of the new study. “If I head on over to my amateur radio operator, and they have been transmitting messages for me, whether it be for moving equipment or finding people or just saying I’m okay to somebody else, suddenly I can’t do that on this day, and that would be pretty stressful.”

Bobby Graves, an experienced ham radio operator who manages the Hurricane Watch Net from his home near Jackson, Mississippi, said the flares caused communications to go down for hours. The Hurricane Watch Net is a group of licensed amateur radio operators trained and organized to provide communications support to the National Hurricane Center during storm emergencies.

“You can hear a solar flare on the air as it’s taking place. It’s like hearing bacon fry in a pan, it just all of a sudden gets real staticky and then it’s like someone just turns the light completely off, you don’t hear anything. And that’s what happened this last year on two occasions,” Graves said. “We had to wait ’til the power of those solar flares weakened so that our signals could actually bounce back off the atmosphere. It was a helpless situation.”

The new study detailing the activity on the Sun and its effects on radio communications from September 4 — 13 serves as an overview to a collection of journal articles in Space Weather investigating the solar activity of September 2017. The collision of Earth and space weather in September delivered a reminder that solar events can happen at any time and may coincide with other emergencies, according to the study’s authors.

The information in the study could help scientists improve space weather forecasting and response, according to the study’s authors. By understanding how the events on the Sun and Earth unfolded, scientists can better understand how to forecast and prepare for future events, they said.

The new study shows the solar flares affected shortwave radio communications, which were being used by amateurs and professionals in emergency response efforts, although it does not detail how emergency efforts may have been affected by the radio blackout.

“Safeguards put in place to prevent dangerous disruption to GPS from solar events worked,” said Mike Hapgood, head of space weather at Rutherford Appleton Laboratory in the United Kingdom, and a scientist not connected to the new study. “In many ways, we were ready. Some things that could have caused big problems didn’t, but shortwave radio is always tricky to use during solar events. But good radio operators are aware of the events and will work hard to overcome problems.”

“It’s the Sun reminding us that it’s there,” Hapgood added. “The Sun’s been very quiet for the last 10 years. It reminds people not to be complacent.”

Unexpected space weather

The 2017 flares were the largest since 2005 and the best documented solar storm to date, observed from a fleet of spacecraft between the Earth and the Sun, in Earth’s orbit, on Earth and Mars.

Solar flares release bursts of X-rays from the Sun that travel outwards in all directions at the speed of light. Strong flares can disrupt radio and aviation communications. Space weather forecasters have only minutes to broadcast warnings to spacecraft, aviation and other administrators before affects are felt on Earth.

X-rays from solar flares interact with Earth’s atmosphere 50-1000 kilometers (30-600 miles) above the Earth, in a region called the ionosphere. Shortwave radio communication works by bouncing signals off the ionosphere and refracting them back to Earth. When the Sun releases a burst of x-rays, like the flares released in early September, the extra energy delivered to the ionosphere can cause it to absorb high frequency radio signals, like those used by ham radio enthusiasts.

The September 6 and 10 flares were also accompanied by bursts of high energy solar material explosively ejected from the Sun in an expanding bubble much larger than the Earth. Such coronal mass ejections, which arrive within one to three days, have the potential to wreck the most havoc on human technology. The geomagnetic storms generated by coronal mass ejections can damage power grids, confuse GPS systems and damage or disrupt communication with spacecraft, including weather satellites.

NOAA’s Space Weather Prediction Center issued warnings for potentially severe geomagnetic storms for September 7-9.

An unlucky coincidence

The unexpected burst of space weather coincided with high hurricane activity in the Atlantic Ocean.

Irma, one of the most powerful Atlantic hurricanes on record with sustained winds of 287 kilometers per hour (175 miles per hour), hit the tiny island of Barbuda at maximum intensity, razing 95 percent of its buildings. The storm destroyed most homes and much infrastructure on St. Martin, Anguilla, Great Inagua and Crooked Island in the Bahamas, and the U.S. and British Virgin Islands. It caused power outages and damage in the Cuban Keys, Turks and Caicos and the southeastern United States. Wind and rain from the storm killed 37 people in the Caribbean and 10 on the U.S. mainland, according the National Hurricane Center.

During the September crisis, the Caribbean Emergency and Weather Net logged many “radiograms” relaying survival notes between anxious family members on the islands and the mainland via ham radio operators, Redmon said.

“Seeing that logbook really brought home to me the human dimension of the storm,” Redmon said. “It put the humanity in the science.”

Ham radio hobbyists routinely volunteer to disseminate hazard information from the National Weather Service to island communities and ships during major storms, report real-time ground conditions and damages back to the National Hurricane Center, and assist the Red Cross with communications.

Graves, the ham radio operator, said many people trapped by storms appreciate hearing a friendly voice over amateur radio relaying the latest weather update, even if they are not able to reply. During a storm, ham radio volunteers strain to listen for lone stations in the affected area that may still be transmitting, Graves said.

“A lot of folks in the area were asking us: We heard there’s Jose coming behind Irma, what’s this thing going to do?” he said.

Myanmar: Tens Of Thousands Displaced As Floods Wreak Havoc

At least 12 people have been killed and tens of thousands displaced in Myanmar after monsoon rains caused flooding across the country, officials said.

“Among the 12 people killed, three are soldiers who were swept away by floodwaters during a rescue operation in northeastern Mon state,” Director-General Ko Ko Naing of the Disaster Management Department said on Thursday.

“Heavy rains are still hampering us from reaching many of those affected places,” he told Anadolu Agency.

An estimated 148,386 people are currently taking refuge in 327 temporary camps in the flood-affected regions.

Nearly 28,000 are still in their flooded homes, either unable to escape to shelters or are opting to stay in the hope that water levels will start to recede, local Myanma Alinn newspaper reports.

“Our house is just beside the river bank so we’re trying to move somewhere higher,” 54-year-old Ohn Myint said.

Farmer and fisherman Win Kyu, 40, is concerned about his fields that now lie completely under water.

“We experienced flooding like this back in 2000. This year is the worst since then,” he said.

“If this goes on, people will struggle to make a living,” Kyu added.

At least 12,140 hectares (30,000 acres) of farmland have been completely destroyed due to the week-long flooding, according to the government.

The country has been facing floods in seven regions since last week as most rivers have exceeded their danger levels by several feet and 36 dams and reservoirs are overflowing due to heavy monsoon rains.

Myanmar experienced severe flooding in 2015 when around 100 people reportedly died and more than 330,000 were forced from their homes.

We Are Now One Step Closer To Predicting Tibet’s Devastating Quakes

Scientists in the United States led by a Chinese geologist have made a discovery that could help explain why the Tibetan plateau is a centre for seismic activity and assist in predicting future tremors.

According to Song Xiaodong, who headed the study at the University of Illinois, the upper mantle layer of the Indian tectonic plate was torn into four pieces when it collided with the Eurasian Plate tens of millions of years ago.

“The collision between the Indian and Asian tectonic plates produced some of the deadliest earthquakes in the world,” said Song in the study published on Tuesday in the American edition of the Proceedings of the National Academy of Sciences. Song is also a researcher at Wuhan University in central China.

“However, the vast plateau is largely inaccessible to geological studies due to poor transport and bad weather,” he said.

The discovery would help geologists to understand what role the Indian upper mantle played in shaping the ever-growing Tibetan plateau and help them to better assess future earthquake risks, Song said.

Before the new findings, geologists were aware of the existence of the tears but did not know how many there were or what shape they were, he said.

The Tibetan plateau – the largest and highest in the world – and Himalayan mountain range were created when India slammed into Asia. Although the initial impact was 50 million years ago, the collision continues deep underground to this day.

Over the past century, more than a dozen earthquakes with a magnitude or more than 7.5 have been recorded on the southern Tibetan plateau, Song said.

In April 2015, almost 9,000 people were killed and 22,000 were injured when a magnitude 7.9 quake hit Nepal.

The biggest tremor in the region (caused by continental collision rather than subduction – the term used when one plate slides under another) was the Assam-Tibet quake that struck in 1950, which measured 8.5 on the Richter scale and left about 4,800 people dead. Its epicentre was south of McMahon Line in a area disputed by China and India.

In 2008, a magnitude 8 earthquake in southwest China’s Sichuan province (also caused by continental collision) left 87,000 people dead, 370,000 injured and 5 million homeless.

Song said his team generated tomographic images of Tibet extending about 160km (100 miles) underground by collecting seismic wave data from various sources. The new images matched well with historic earthquake activity and geological observations, he said.

“The three tears formed by the four pieces help explain why mantle-deep earthquakes occur in some parts of southern Tibet and not others,” he said, as deeper earthquakes were more likely to happen on the four “fingers” and not in the gaps.

The findings would shed more light on continental collisions, which happened in more places than subduction, Song said.

“The discovery can be applied to research on the Tethyan Tectonic domain, which ranges from China to the Alps, including [China’s] Sichuan province, the Tibetan plateau, Iran and Turkey,” he said.

Subduction can cause large earthquakes and tsunami as seawater is disrupted by the moving sea floor. The magnitude 9 earthquake in Japan in 2011 that caused a tsunami happened when the Pacific Plate subducted under the plate beneath northern Honshu in Japan, Song said.

Earthquakes Can Systematically Trigger Other Ones On Opposite Side Of Earth

New research shows that a big earthquake can not only cause other quakes, but large ones, and on the opposite side of the Earth.

The findings, published today in Scientific Reports, are an important step toward improved short-term earthquake forecasting and risk assessment.

Scientists at Oregon State University looked at 44 years of seismic data and found clear evidence that tremblors of magnitude 6.5 or larger trigger other quakes of magnitude 5.0 or larger.

It had been thought that aftershocks — smaller magnitude quakes that occur in the same region as the initial quake as the surrounding crust adjusts after the fault perturbation — were the only seismic activity an earthquake could lead to.

But the OSU analysis of seismic data from 1973 through 2016 — an analysis that excluded data from aftershock zones — provided the first discernible evidence that in the three days following one large quake, other earthquakes were more likely to occur.

Each test case in the study represented a single three-day window “injected” with a large-magnitude (6.5 or greater) earthquake suspected of inducing other quakes, and accompanying each case was a control group of 5,355 three-day periods that didn’t have the quake injection.

“The test cases showed a clearly detectable increase over background rates,” said the study’s corresponding author, Robert O’Malley, a researcher in the OSU College of Agricultural Sciences. “Earthquakes are part of a cycle of tectonic stress buildup and release. As fault zones near the end of this seismic cycle, tipping points may be reached and triggering can occur.”

The higher the magnitude, the more likely a quake is to trigger another quake. Higher-magnitude quakes, which have been happening with more frequency in recent years, also seem to be triggered more often than lower-magnitude ones.

A tremblor is most likely to induce another quake within 30 degrees of the original quake’s antipode — the point directly opposite it on the other side of the globe.

“The understanding of the mechanics of how one earthquake could initiate another while being widely separated in distance and time is still largely speculative,” O’Malley said. “But irrespective of the specific mechanics involved, evidence shows that triggering does take place, followed by a period of quiescence and recharge.”

Earthquake magnitude is measured on a logarithmic 1-10 scale — each whole number represents a 10-fold increase in measured amplitude, and a 31-fold increase in released energy.

The largest recorded earthquake was a 1960 temblor in Chile that measured 9.5. The 2011 quake that ravaged the Fukushima nuclear power plant in Japan measured 6.6.

In 1700, an approximate magnitude 9.0 earthquake hit the Cascadia Subduction Zone — a fault that stretches along the West Coast of North American from British Columbia to California.

Collaborating with O’Malley were Michael Behrenfeld of the College of Agricultural Sciences, Debashis Mondal of the College of Science and Chris Goldfinger of the College of Earth, Ocean and Atmospheric Sciences.

Hector Rapidly Intensifies Into a Hurricane in the Pacific Ocean, Has an Uncertain Future Next Week Near Hawaii

Hector has rapidly intensified into a hurricane more than 2,000 miles east-southeast of Hawaii and could pass near the islands next week.

Consolidated convection and a developing eye in a small inner core indicated that Hector was becoming better organized Thursday morning. Hector’s maximum sustained winds were 85 mph as of 8 a.m. PDT Thursday, an increase of 40 mph from the same time on Wednesday morning.

Hector is expected to get pushed westward along the southern periphery of high pressure that will be moving westward in tandem, generally gaining strength over the next four to five days. It’s possible that Hector could become a major hurricane (Category 3 or stronger) by this weekend.

If Hector would continue its straight westward trajectory, it would track several hundred miles south of the Hawaiian island chain mid-late next week.

But there’s one weather feature that could put a glitch in that forecast.

Any weakness in the steering subtropical high to the north of Hector could allow it to creep on a slightly more northward path next week.

The more north it tracks, the bigger direct threat Hector could pose to Hawaii next week. A few of our ensemble forecast model tracks are suggesting a more northward bend.

It is too soon to determine how close Hector will track next week, and thus, what sort of impacts are going to occur.

At least increased swells at particularly south and east-facing beaches are expected as soon as early next week, even if the system passes well to the south.

Climatology’s Impact on the Pacific
A gentle transition toward El Niño has been in progression this summer.

In the Atlantic Basin, this usually means less tropical activity, but the story is different in the Pacific.

By definition, El Niño is warmer-than-average waters in the eastern or central Pacific, which is favorable for tropical systems. Years with El Niño usually have more tropical cyclones than in years with a La Niña or neutral conditions.

Tropical systems like Hector feed on the ocean’s heat to build clouds, thunderstorms and wind.

A trend toward El Niño means tropical systems that develop in the eastern and, sometimes, central Pacific Ocean will likely have more heat on which to feed in the coming months.

In fact, the 80-degree line, which is used as a diffuse border between where tropical systems can develop and where they have a harder time intensifying, is farther north than normal to start August.

This makes a considerable difference for systems moving from Central America westward toward Hawaii. Systems usually run out of warm water before they make it to Hawaii, but this year, a warm bridge of water is in place that might allow systems to make it farther west.

Another piece of this climatological puzzle: Hector has formed in the favorable phase of the Madden-Julian Oscillation (MJO). The MJO enhances rainfall and supports tropical cyclones around the world when its enhanced phase of generally rising motion in the atmosphere comes around.

Hector should benefit from this enhanced wave of the MJO for several days.

This recent enhanced phase supported six tropical cyclones in the western Pacific, including Son-Tinh and Jongdari, and two more tropical cyclones in the eastern Pacific.