Mantle Rock Behind Yellowstone’s Supereruptions Extends To Northern California

Victor Camp has spent a lifetime studying volcanic eruptions all over the world, starting in Saudi Arabia, then Iran, and eventually the Pacific Northwest. The geology lecturer finds mantle plumes that feed the largest of these eruptions fascinating, because of their massive size and the impact they can have on our environment.

Over the past two years, this abiding interest helped him connect the dots and discover that the mantle source rock that rises upward from beneath Yellowstone National Park to feed its periodic supereruptions also spreads out west all the way to Northern California and Oregon.

On its westward journey, it acts as the catalyst for fairly young—meaning less than 2 million years old—volcanic eruptions at places such as Craters of the Moon National Monument and Preserve in Idaho, before reaching Medicine Lake Volcano in the northeastern tip of California, close to the Oregon border.

The mantle rock spreads laterally through narrow flow-line channels well below the earth’s crust for over 500 miles, bifurcating twice: once as it leaves Yellowstone and again as it reaches the California-Oregon border. These lines end at Medicine Lake, an active volcano near Mount Shasta, and at Newberry Volcano, an active volcano about 20 miles south of Bend, Ore.

This discovery is significant because it reveals how mantle plumes similar to the one beneath Yellowstone behave as they feed the majority of the world’s largest volcanic eruptions of basaltic lava, including the ones in Hawaii.

“Since the plume is not controlled by plate tectonics, it can rise and emerge anywhere on earth, depending on where it manages to break through the earth’s surface,” Camp said. “So, knowing this will help us understand supereruptions that have occurred before, and those that will occur in the future.”

The results of his self-funded study were published in the journal Geology in May.

Mantle plumes are composed of very hot, low-density mantle rock. Mantle is one of three major layers of planet earth—we live on the earth’s crust, the thinnest layer, and mantle is the second denser layer that extends from about 100 kilometers (62 miles) below the earth’s surface all the way down to about 2,700 kilometers (about 1,680 miles), and further down is the core of the earth comprised mostly of iron mixed with a few other elements.

Mantle plumes are technically mantle rock, but because they are hotter and more buoyant than surrounding mantle they rise in a plume-like form. When the Yellowstone plume first reached the base level of the North American tectonic plate, it was blocked by the rigidity of the cold plate base which acted as a barrier. At this depth of about 100 kilometers, the plume began to decompress and melt, while simultaneously spreading laterally to the west.

The mantle rock that Camp traced to California took many millions of years to move out west. What’s interesting is that the source of the mantle rock under Yellowstone today originated at the core-mantle boundary geographically centered near present-day San Diego, but very deep beneath the earth’s surface we reside on—and took a circuitous route through different regions of the mantle before it rose up underneath the Yellowstone volcano.

Camp sourced seismic tomography images, similar to X-rays and CT-scans (computerized tomography scans), that show how the mantle plume ascended, and he analyzed field data as well as published chemistry and age data on volcanic rocks at the surface, to demonstrate its westward flow.

Earth’s Last Magnetic Field Reversal Took Far Longer Than Once Thought

Earth’s magnetic field seems steady and true—reliable enough to navigate by.

Yet, largely hidden from daily life, the field drifts, waxes and wanes. The magnetic North Pole is currently careening toward Siberia, which recently forced the Global Positioning System that underlies modern navigation to update its software sooner than expected to account for the shift.

And every several hundred thousand years or so, the magnetic field dramatically shifts and reverses its polarity: Magnetic north shifts to the geographic South Pole and, eventually, back again. This reversal has happened countless times over the Earth’s history, but scientists have only a limited understanding of why the field reverses and how it happens.

New work from University of Wisconsin-Madison geologist Brad Singer and his colleagues finds that the most recent field reversal, some 770,000 years ago, took at least 22,000 years to complete. That’s several times longer than previously thought, and the results further call into question controversial findings that some reversals could occur within a human lifetime.

The new analysis—based on advances in measurement capabilities and a global survey of lava flows, ocean sediments and Antarctic ice cores—provides a detailed look at a turbulent time for Earth’s magnetic field. Over millennia, the field weakened, partially shifted, stabilized again and then finally reversed for good to the orientation we know today.

The results provide a clearer and more nuanced picture of reversals at a time when some scientists believe we may be experiencing the early stages of a reversal as the field weakens and moves. Other researchers dispute the notion of a present-day reversal, which would likely affect our heavily electronic world in unusual ways.

Singer published his work Aug. 7 in the journal Science Advances. He collaborated with researchers at Kumamoto University in Japan and the University of California, Santa Cruz.

“Reversals are generated in the deepest parts of the Earth’s interior, but the effects manifest themselves all the way through the Earth and especially at the Earth’s surface and in the atmosphere,” explains Singer. “Unless you have a complete, accurate and high-resolution record of what a field reversal really is like at the surface of the Earth, it’s difficult to even discuss what the mechanics of generating a reversal are.”

Earth’s magnetic field is produced by the planet’s liquid iron outer core as it spins around the solid inner core. This dynamo action creates a field that is most stable going through roughly the geographic North and South poles, but the field shifts and weakens significantly during reversals.

As new rocks form—typically either as volcanic lava flows or sediments being deposited on the sea floor—they record the magnetic field at the time they were created. Geologists like Singer can survey this global record to piece together the history of magnetic fields going back millions of years. The record is clearest for the most recent reversal, named Matuyama-Brunhes after the researchers who first described reversals.

For the current analysis, Singer and his team focused on lava flows from Chile, Tahiti, Hawaii, the Caribbean and the Canary Islands. The team collected samples from these lava flows over several field seasons.

“Lava flows are ideal recorders of the magnetic field. They have a lot of iron-bearing minerals, and when they cool, they lock in the direction of the field,” says Singer. “But it’s a spotty record. No volcanoes are erupting continuously. So we’re relying on careful field work to identify the right records.”

The researchers combined magnetic readings and radioisotope dating of samples from seven lava flow sequences to recreate the magnetic field over a span of about 70,000 years centered on the Matuyama-Brunhes reversal. They relied on upgraded methods developed in Singer’s WiscAr geochronology lab to more accurately date the lava flows by measuring the argon produced from radioactive decay of potassium in the rocks.

They found that the final reversal was quick by geological standards, less than 4,000 years. But it was preceded by an extended period of instability that included two excursions—temporary, partial reversals—stretching back another 18,000 years. That span is more than twice as long as suggested by recent proposals that all reversals wrap up within 9,000 years.

The lava flow data was corroborated by magnetic readings from the seafloor, which provides a more continuous but less precise source of data than lava rocks. The researchers also used Antarctic ice cores to track the deposition of beryllium, which is produced by cosmic radiation colliding with the atmosphere. When the magnetic field is reversing, it weakens and allows more radiation to strike the atmosphere, producing more beryllium.

Since humanity began recording the strength of the magnetic field, it has decreased in strength about five percent each century. As records like Singer’s show, a weakening field seems to be a precursor to an eventual reversal, although it’s far from clear that a reversal is imminent.

A reversing field might significantly affect navigation and satellite and terrestrial communication. But the current study suggests that society would have generations to adapt to a lengthy period of magnetic instability.

“I’ve been working on this problem for 25 years,” says Singer, who stumbled into paleomagnetism when he realized the volcanoes he was studying served as a good record of Earth’s magnetic fields. “And now we have a richer record and better-dated record of this last reversal than ever before.”

Archaeologists Discover Almost 40 New Monuments Close To Newgrange

The research is part of the ‘Boyne to Brodgar’ project, which is examining connections between Neolithic sites in the Boyne Valley and the Orkney Islands.

The area surveyed included locations both sides of the Boyne, within the bend of the Boyne River, and across from the prehistoric tombs at Newgrange, Knowth and Dowth.

Newgrange is synonymous with the Winter Solstice, where the dawn light illuminates the burial chamber, and is among the best known of the passage tombs in Brú na Boinne.

Since 1993 the site has been a World Heritage Site designated by UNESCO.

Dr. Davis, who has worked for over a decade at Brú na Bóinne , said the monuments among the latest discoveries likely range from “early Neolithic houses to Neolithic timber enclosures as well as Bronze Age burial monuments and some early medieval farmsteads”.

“There are still significant gaps, most notably in our understanding of settlement, but we are continuing to work to understand these.”

The results of this year’s surveys “build on the exceptional summer last year in Brú na Bóinne and continue to demonstrate what a globally significant archaeological landscape we have in Brú na Bóinne,” he added.

When finished, the Boyne to Brodgar project, which began five years ago, will have surveyed more than five square kilometres.

Evidence Found For Cloaked Black Hole In Early Universe

A group of astronomers, including Penn State scientists, has announced the likely discovery of a highly obscured black hole existing only 850 million years after the Big Bang, using NASA’s Chandra X-ray Observatory. This is the first evidence for a cloaked black hole at such an early time.

Supermassive black holes typically grow by pulling in material from a disk of surrounding matter. For the most rapid growth, this process generates prodigious amounts of radiation in a very small region around the black hole, and produces an extremely bright, compact source called a quasar.

Theoretical calculations indicate that most of the early growth of black holes occurs while the black hole and disk are surrounded by a dense cloud of gas that feeds material into the disk. As the black hole grows, the gas in the cloud is depleted until the black hole and its bright disk are uncovered.

“It’s extraordinarily challenging to find quasars in this cloaked phase because so much of their radiation is absorbed and cannot be detected by current instruments,” said Fabio Vito, CAS-CONICYT Fellow at the Pontificia Universidad Católica de Chile, who led the study, which he started as a postdoctoral researcher at Penn State. “Thanks to Chandra and the ability of X-rays to pierce through the obscuring cloud, we think we’ve finally succeeded.”

The discovery resulted from observations of a quasar called PSO 167-13, which was first discovered by Pan-STARRS, an optical-light telescope in Hawaii. Optical observations from these and other surveys have resulted in the detection of about 200 quasars already shining brightly when the universe was less than a billion years old, or about 8 percent of its present age. These surveys were only considered effective at finding unobscured black holes, because the radiation they detect is suppressed by even thin clouds of surrounding gas and dust. Therefore PSO 167-13 was expected to be unobscured.

Vito’s team were able to test this idea by making Chandra observations of PSO 167-13 and nine other quasars discovered with optical surveys. After 16 hours of observation only three X-ray photons were detected from PSO 167-13, all with relatively high energies. Low energy X-rays are more readily absorbed than higher energy ones, so the likely explanation for the Chandra observation is that the quasar is highly obscured by gas, allowing only high energy X-rays to be detected.

“This was a complete surprise,” said co-author Niel Brandt, Verne M. Willaman Professor of Astronomy and Astrophysics and professor of physics at Penn State. “It was like we were expecting a moth but saw a cocoon instead. None of the other nine quasars we observed were cloaked, which is what we anticipated.”

An interesting twist for PSO 167-13 is that the galaxy hosting the quasar has a close companion galaxy visible in data previously obtained with the Atacama Large Millimeter Array (ALMA) of radio dishes in Chile and NASA’s Hubble Space Telescope. Because of their close separation and the faintness of the X-ray source, the team was unable to determine whether the newly-discovered X-ray emission is associated with the quasar PSO 167-13 or with the companion galaxy.

If the X-rays come from the known quasar, then astronomers need to develop an explanation for why the quasar appeared highly obscured in X-rays but not in optical light. One possibility is that there has been a large and rapid increase in obscuration of the quasar during the 3 years between when the optical and the X-ray observations were made.

On the other hand, if instead the X-rays arise from the companion galaxy, then it represents the detection of a new quasar in close proximity to PSO 167-13. This quasar pair would be the most distant yet detected, breaking the record of 1.2 billion years after the Big Bang. In either of these two cases, the quasar detected by Chandra would be the most distant cloaked one yet seen. The previous record holder is observed 1.3 billion years after the Big Bang. The authors plan to make a more refined characterization of the source with follow-up observations.

“With a longer Chandra observation, we’ll be able to get a better estimate of how obscured this black hole is,” said co-author Franz Bauer, also from the Pontificia Universidad Católica de Chile and a former Penn State postdoctoral researcher, “and make a confident identification of the X-ray source with either the known quasar or the companion galaxy.”

The authors also plan to search for more examples of highly obscured black holes.

“We suspect that the majority of supermassive black holes in the early universe are cloaked: it’s then crucial to detect and study them to understand how they could grow to masses of a billion suns so quickly,” said co-author Roberto Gilli of INAF in Bologna, Italy.

A paper describing these results appears online August 8 in the journal Astronomy & Astrophysics. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science and flight operations from Cambridge, MA. The data utilized in this research were gathered using the Advanced CCD Imaging Spectrometer on Chandra, an instrument conceived and designed by a team led by Penn State Evan Pugh Professor Emeritus of Astronomy and Astrophysics Gordon Garmire.

In addition to Vito, Brandt, and Bauer, the research team also includes former Penn State postdoctoral researchers Ohad Shemmer, Cristian Vignali, and Bin Luo, who also earned his doctoral degree at Penn State.

Early Seismic Waves Hold The Clue To The Power Of The Main Temblor

Scientists will be able to predict earthquake magnitudes earlier than ever before thanks to new research by Marine Denolle, assistant professor in the Department of Earth and Planetary Sciences (EPS).

“For large-strike slip earthquakes like those that occur on the San Andreas Fault, which are likely to rupture for about 50 seconds, we would be able to predict the final magnitudes 2 to 5 seconds after getting the first seismic wave,” said Denolle, senior author of the study that appeared recently in Geophysical Research Letters.

Denolle shares authorship with Philippe Danré, the first author and former EPS visiting master’s student; Jiuxun Yin, a Ph.D. candidate in the Graduate School of Arts and Sciences; and Brad Lipovsky, an EPS researcher. The team also proved that the activity of earthquakes is actually organized, not chaotic as scientists had previously believed.

“Our research, which is technically rather simple, provides answers relevant not only to earthquake dynamics, but to prediction of earthquake behavior before the earthquake ends,” said Denolle. While there is still no way to predict quakes before they begin, current detection systems consist of a series of sensors that transmit signals to determine the location and magnitude once rapid shaking occurs.

Denolle and her team used data products and created numerical models to predict an earthquake’s final magnitude 10 to 15 seconds faster than today’s best algorithms—seconds that could provide enough time for people to exit a building or for officials to stop traffic before shaking starts.

The team began by examining patterns of seismic signals—transient waveforms that radiate from the first rupture in a fault, a thin seam of crushed rock separating two blocks of the earth’s crust. An earthquake occurs when the blocks break free. Scientists read these waves using an underground instrument called a seismometer that translates motions into a graph called a seismogram. “Seismograms give us information about what happened on the fault at the place where the earthquake occurred,” said Denolle.

Denolle and her team combined previous seismograms, which recorded changes in the waves over time as they traveled between the seismometer and the fault. This data product, known as “source time function,” provides a more accurate read on the waves from the source over long distances.

Denolle and her team examined a catalog of source time functions from earthquakes around the globe between 1990 and 2017. They discovered that large earthquakes are actually composed of a series of subevents, smaller events whose size is nearly proportional to the size of the main one. The team concluded that they could predict the final size of an earthquake based on the size of the first few subevents.

“The self-organization of earthquake ruptures is well-explained by heterogeneity on the fault, and our current knowledge of earthquake physics can explain our observations,” said Denolle.

The researchers hope their work will continue to evolve and can one day help improve the algorithms for early warnings of earthquake. To do this, they will work on extracting more accurate high-frequency signals from earthquakes to understand more about their dynamics.

“Eventually, we would hope that the study can provide some guidelines for proper modeling of large earthquakes, and serve as a tool for earthquake early warning, especially for regions expecting large earthquakes, like the Pacific Coast and Japan,” said Denolle.

Scientists Uncover Deep-Rooted Plumbing System Beneath Ocean Volcanoes

Cardiff University scientists have revealed the true extent of the internal ‘plumbing system’ that drives volcanic activity around the world.

An examination of pockets of magma contained within crystals has revealed that the large chambers of molten rock which feed volcanoes can extend to over 16 km beneath the Earth’s surface.

The new study, published today in Nature, has challenged our understanding of the structure of ocean volcanoes, with previous estimates suggesting that magma chambers were located up to 6 km below the surface.

Interconnected magma chambers and reservoirs are the key driver of the dynamics of volcanic systems around the world, so understanding their nature is an important step towards understanding how volcanoes are supplied with magma, and, ultimately, how they erupt.

Mid-ocean ridges in particular make up the most significant volcanic system on our planet, forming a roughly 80,000 km-long network of undersea mountains along which 75 percent of Earth’s volcanism occurs.

However, because these volcanoes are located under thousands of metres of water, and sometimes permanent sea ice, we are only just starting to understand what the subsurface architecture of these volcanoes look like.

It is known that magma plumbing systems exist below the Earth’s surface, which can be thought of as a series of interconnected magma conduits and reservoirs, much like the pipes and tanks that make up plumbing systems in a house, instead at mid-ocean ridges the tap is a volcano.

In their study, the team analysed common minerals such as olivine and plagioclase which grew deep within the volcanoes and were subsequently erupted from the Gakkel Ridge located beneath the Arctic Ocean between Greenland and Siberia.

These minerals act as tape recorders from which changes in the physical and chemical conditions of the environment within which they grew can be measured. Critically, the team were able to record what processes occurred and at what depths these minerals began to crystallise in magma reservoirs.

Lead author of the study, Ph.D. student Emma Bennett, from the School of Earth and Ocean Sciences, said: “To calculate the depths of magma reservoirs we used melt inclusions, which are small pockets of magma that become trapped within growing crystals at different depths in the magmatic system. These pockets of melt contain dissolved CO2 and H2O.

“Because the melt cannot dissolve as much CO2 at shallow pressure as it can at high pressure, we can determine what pressure the melt inclusion was trapped, and in turn work out the depth at which crystallisation occurred, by measuring the amount of CO2 in the melt inclusions.

“Put simply, crystal growth in a magmatic environment can be likened to the growth rings on a tree; for example, a change in the chemical environment will result in the growth of a new layer with a different crystal composition.

“By analysing multiple melt inclusions we can start to reconstruct the architecture of the magmatic system.”

The study was the first to use the mineral plagioclase as a proxy for the depth of magma reservoirs, with previous studies using the mineral olivine.

The results showed that magma plumbing systems at mid-ocean ridges extend to much greater depths than previously thought. Oceanic crust is normally only around 6 km thick, and conventionally magma chambers were thought of as being located here.

Yet the new data has shown that the plumbing system extends to at least 16 km depth, which means that the magma chambers that fed the Gakkel Ridge volcanoes are located much deeper down in the mantle.

NASA’s MMS Finds First Interplanetary Shock

The Magnetospheric Multiscale mission—MMS—has spent the past four years using high-resolution instruments to see what no other spacecraft can. Recently, MMS made the first high-resolution measurements of an interplanetary shock.

These shocks, made of particles and electromagnetic waves, are launched by the Sun. They provide ideal test beds for learning about larger universal phenomena, but measuring interplanetary shocks requires being at the right place at the right time. Here is how the MMS spacecraft were able to do just that.

What’s in a Shock?

Interplanetary shocks are a type of collisionless shock—ones where particles transfer energy through electromagnetic fields instead of directly bouncing into one another. These collisionless shocks are a phenomenon found throughout the universe, including in supernovae, black holes and distant stars. MMS studies collisionless shocks around Earth to gain a greater understanding of shocks across the universe.

Interplanetary shocks start at the Sun, which continually releases streams of charged particles called the solar wind.

The solar wind typically comes in two types—slow and fast. When a fast stream of solar wind overtakes a slower stream, it creates a shock wave, just like a boat moving through a river creates a wave. The wave then spreads out across the solar system. On Jan. 8, 2018, MMS was in just the right spot to see one interplanetary shock as it rolled by.

Catching the Shock

MMS was able to measure the shock thanks to its unprecedentedly fast and high-resolution instruments. One of the instruments aboard MMS is the Fast Plasma Investigation. This suite of instruments can measure ions and electrons around the spacecraft at up to 6 times per second. Since the speeding shock waves can pass the spacecraft in just half a second, this high-speed sampling is essential to catching the shock.

Looking at the data from Jan. 8, the scientists noticed a clump of ions from the solar wind. Shortly after, they saw a second clump of ions, created by ions already in the area that had bounced off the shock as it passed by. Analyzing this second population, the scientists found evidence to support a theory of energy transfer first posed in the 1980s.

MMS consists of four identical spacecraft, which fly in a tight formation that allows for the 3-D mapping of space. Since the four MMS spacecraft were separated by only 12 miles at the time of the shock (not hundreds of kilometers as previous spacecraft had been), the scientists could also see small-scale irregular patterns in the shock. The event and results were recently published in the Journal of Geophysical Research.

Going Back for More

Due to timing of the orbit and instruments, MMS is only in place to see interplanetary shocks about once a week, but the scientists are confident that they’ll find more. Particularly now, after seeing a strong interplanetary shock, MMS scientists are hoping to be able to spot weaker ones that are much rarer and less well understood. Finding a weaker event could help open up a new regime of shock physics.