Part III (con’t) Cosmic Rays and There Effect to Our Solar System and Earth

The origin of ultrahigh-energy cosmic rays (UHECRs) is a half-century-old enigma. The mystery has been deepened by an intriguing coincidence: over ten orders of magnitude in energy, the energy generation rates of UHECRs, PeV neutrinos and isotropic sub-TeV gamma-rays are comparable, which hints at a grand unified picture.

Here we report that powerful black hole jets in aggregates of galaxies can supply the common origin for all of these phenomena. Once accelerated by a jet, low-energy cosmic rays confined in the radio lobe are adiabatically cooled; higher-energy cosmic rays leaving the source interact with the magnetized cluster environment and produce neutrinos and gamma-rays.

The highest-energy particles escape from the host cluster and contribute to the observed cosmic rays above 100 PeV. The model is consistent with the spectrum, composition and isotropy of the observed UHECRs, and also explains the IceCube neutrinos and the non-blazar component of the Fermi gamma-ray background, assuming a reasonable energy output from black hole jets in clusters.

__________________

Science Of Cycles Research Fund

Science Of Cycles keeps you tuned in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

 

Part III – Cosmic Rays and There Effect to Our Solar System and Earth

First, I wish to address the study of the most powerful kinetically energized cosmic ray particle what has now become known as the ‘OMG Particle’.

“OMG” was the nickname given to the first example of what are now known as ultra-high-energy cosmic rays, detected in 1991 by the University of Utah’s Fly’s Eye cosmic ray detector. That single proton slammed into our atmosphere going roughly 99.99999999999999999999951 percent the speed of light. And no, all those nines aren’t just for dramatic effect to make the number look impressive – it really was that fast. This particle had the same amount of kinetic energy as a decently thrown baseball … compressed down into an object the size of a proton.

That means this particle had over 10 million times more energy than what our most powerful particle collider, the LHC, can produce. Due to relativistic time dilation, at that speed, the OMG particle could travel to our nearest neighbor star, Proxima Centauri, in 0.43 milliseconds of the particle’s own time. It could continue on to our galactic core by the time you’ve finished reading this sentence (from its own perspective).

To accelerate a charged particle to insane velocities, you need two key ingredients: a lot of energy and a magnetic field. The magnetic field does the work of transferring to the particle whatever energies are in your event (say, the explosive kinetic energy of a supernova blast or the swirling gravitational pull as matter falls toward a black hole).

The true origins of these ultra-high-energy “OMG” particles are tough to pin down, and despite almost 30 years of detection history, we don’t have a lot of firm answers. Which is fine – it’s good to have at least some mysteries left in the universe. Astrophysicists could use some job security, too.

__________________

Science Of Cycles Research Fund