BREAKING NEWS: New Study Suggests Electric Discharge Between Earth’s Core and Magnetic Field

This news release highlights the observation of charged particles in the form of what is sometimes described as “sprites”, which is an electrical discharge which surges from “below” to “above”. It is similar to the mechanics of a local lightening/thunderstorm we witness here on Earth. To the typical observer, it appears that lightening comes down from the heavens and strikes the Earth; however, it is the intense impulse of charge which comes from the ground which produces high voltage.

The existence of these upper atmosphere sprites has been reported by pilots for years sparking a healthy debate as to their cause and how they exist. ESA astronaut Andreas Mogensen during his mission on the International Space Station in 2015 was asked to take pictures over thunderstorms with the most sensitive camera on the orbiting outpost to look for these brief features.

Denmark’s National Space Institute has now published the results of photos taken by ESA astronaut Andreas Mogensen, of upper atmosphere discharges, sometimes referred to as blue lightening or ‘sprites’. The video taken by Mogensen were from the (ISS) International Space Station. (shown below)

The cause or effects of these charged particle events are not well understood. Researched data does suggest a connection between Earth’s magnetic field and Earth’s core. With this hypothesis as a foundation, my personal research suggest a continued conjunction goes beyond our Heliosphere and into our galaxy Milky Way.

The blue discharges and jets are examples of a little-understood part of our atmosphere called the heliosphere. The Heliosphere is the outer atmosphere of the Sun and marks the edge of the Sun’s magnetic influence in space. The solar wind that streams out in all directions from the rotating Sun is a magnetic plasma, and it fills the vast space between the planets in our solar system.

The magnetic plasma from the Sun does not conjoin with the magnetic plasma between the stars in our galaxy, allowing the solar wind carves out a bubble-like atmosphere that shields our solar system from the majority of galactic cosmic rays.

Andreas concludes, “It is not every day that you get to capture a new weather phenomenon on film, so I am very pleased with the result – but even more so that researchers will be able to investigate these intriguing thunderstorms in more detail soon.”

New Study Suggest Dwarf Cluster Formed Milky Way

Using data from the Sloan Digital Sky Survey (SDSS) and various optical telescopes, a team of astronomers has discovered seven distinct groups of dwarf galaxies with just the right starting conditions to eventually merge and form larger galaxies, including spiral galaxies like the Milky Way. This discovery offers compelling evidence that the mature galaxies we see in the universe today were formed when smaller galaxies merged many billions of years ago.

“We know that to make a large galaxy, the universe has to bring together many smaller galaxies,” said Sabrina Stierwalt an astronomer with the National Radio Astronomy Observatory (NRAO) and University of Virginia in Charlottesville. “For the first time, we have found examples of the first steps in this process — entire populations of dwarf galaxies that are all bound together in the same general neighborhoods.”

Stierwalt and her team began their search by poring over SDSS data looking for pairs of interacting dwarf galaxies. The astronomers then examined the images to find specific pairs that appeared to be part of even larger assemblages of similar galaxies.

The researchers then used the Magellan telescope in Chile, the Apache Point Observatory in New Mexico, and the Gemini telescope in Hawaii to confirm that the apparent clusters are not just on the same line of sight but are also approximately the same distance from Earth, indicating they are gravitationally bound together.

This discovery of long-sought groups of tiny galaxies is reported online in the journal Nature Astronomy.

“We hope this discovery will enable future studies of groups of dwarf galaxies and offer insights into the formation of galaxies like the Milky Way,” concluded Stierwalt.

The Milky Way’s Black Hole is Spewing Planet-size Orbs

Every few thousand years, an unlucky star wanders too close to the black hole at the center of the Milky Way.

The black hole’s powerful gravity rips the star apart, sending a long streamer of gas whipping outward. That would seem to be the end of the story, but it’s not. New research shows that not only can the gas gather itself into planet-size objects, but those objects then are flung throughout the galaxy in a game of cosmic “spitball.”

“A single shredded star can form hundreds of these planet-mass objects. We wondered: Where do they end up? How close do they come to us? We developed a computer code to answer those questions,” says lead author Eden Girma, an undergraduate student at Harvard University and a member of the Banneker/Aztlan Institute.

Girma is presenting her findings at a Wednesday poster session and Friday press conference at a meeting of the American Astronomical Society.

Girma’s calculations show that the closest of these planet-mass objects might be within a few hundred light-years of Earth. It would have a weight somewhere between Neptune and several Jupiters. It would also glow from the heat of its formation, although not brightly enough to have been detected by previous surveys. Future instruments like the Large Synoptic Survey Telescope and James Webb Space Telescope might spot these far-flung oddities.

She also finds that the vast majority of the planet-mass objects – 95 percent – will leave the galaxy entirely due to their speeds of about 20 million miles per hour (10,000 km/s). Since most other galaxies also have giant black holes at their cores, it’s likely that the same process is at work in them.

“Other galaxies like Andromeda are shooting these ‘spitballs’ at us all the time,” says co-author James Guillochon of the Harvard-Smithsonian Center for Astrophysics (CfA).

Although they might be planet-size, these objects would be very different from a typical planet. They are literally made of star-stuff, and since different ones would develop from different pieces of the former star, their compositions could vary.

They also form much more rapidly than a normal planet. It takes only a day for the black hole to shred the star (in a process known as tidal disruption), and only about a year for the resulting fragments to pull themselves back together. This is in contrast to the millions of years required to create a planet like Jupiter from scratch.

Once launched, it would take about a million years for one of these objects to reach Earth’s neighborhood. The challenge will be to tell it apart from free-floating planets that are created during the more mundane process of star and planet formation.

“Only about one out of a thousand free-floating planets will be one of these second-generation oddballs,” adds Girma.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

Astronomers Find Supercluster of Galaxies (Vela) Near Milky Way

An international team of astronomers, including astronomers from the Australian National University (ANU), has found one of the largest superclusters of galaxies in the universe. The supercluster was named the Vela supercluster.

The Vela supercluster is a neighbor of the Milky Way. Scientists did not detect it before because it was hidden by the Milky Way’s stars and dust. Now astronomers realize that this supercluster is also influenced by the motion of the Milky Way.

“This is one of the biggest concentrations of galaxies in the Universe – possibly the biggest in the neighborhood of our Galaxy, but that will need to be confirmed by further study,” adds Matthew Colless, a professor from the ANU Research School of Astronomy and Astrophysics. “The gravity of the Vela supercluster may explain the difference between the measured motion of the Milky Way through space and the motion predicted from the distribution of previously mapped galaxies.”

To confirm that the Vela supercluster was really a supercluster, the team including astronomers based in South Africa, Australia and Europe used the Anglo-Australian Telescope. This also helped estimate Vela’s effect on the motion of our own galaxy.

Furthermore, there will be two new Australian surveys that will be conducted to confirm the size of the Vela supercluster. These surveys would begin next year.

“The Taipan optical survey will measure galaxy distances over a bigger area around Vela while the WALLABY radio survey will be able to peer through the densest parts of the Milky Way into the supercluster’s heart,” Colless explains.

In September, astronomers also released the most precise and detailed sky survey of the Milky Way to date. The map is composed of 1.15 billion stars, a task that took a thousand days to finish.

The accomplishment was made possible by the Gaia spacecraft, which was launched on Dec. 19, 2013. The map was made by researchers from 25 European countries.

New Family of Stars Discovered in Milky Way

An astronomer from LJMU’s Astrophysics Research Institute has discovered a new family of stars in the core of the Milky Way Galaxy which provides new insights into the early stages of the Galaxy’s formation.

milky-way-new-stars

The discovery has shed new light on the origins of globular clusters – which are concentrations of typically a million stars, formed at the beginning of the Milky Way’s history.

LJMU is a member of Sloan Digital Sky Survey – an international collaboration of scientists at numerous institutions. One of the projects of this collaboration is APOGEE (the Apache Point Observatory Galactic Evolution Experiment) which collects infrared data for hundreds of thousands of stars in the Milky Way.

It was through observing stars in the infrared towards the Galactic center that led to the discovery of a new population of stars, the likes of which had only been seen before inside globular clusters.

This intriguing new family of stars could have possibly belonged to globular clusters that were destroyed during the violent initial formation of the Galactic center, in which case there would have been about 10 times more globular clusters in the Milky Way in early life than today. This means that a substantial fraction of the old stars inhabiting the inner parts of the Galaxy today may have been initially formed in globular clusters that were later destroyed.

Ricardo Schiavon, lead researcher on the project said:

“This is a very exciting finding that helps us address fascinating questions such as what is the nature of the stars in the inner regions of the Milky Way, how globular clusters formed and what role they played in the formation of the early Milky Way—and by extension the formation of other galaxies.”

“The center of the Milky Way is poorly understood, because it is blocked from view by intervening dust. Observing in the infrared, which is less absorbed by dust than visible light, APOGEE can see the center of the Galaxy better than other teams

“From our observations we could determine the chemical compositions of thousands of stars, among which we spotted a considerable number of stars that differed from the bulk of the stars in the inner regions of the Galaxy, due to their very high abundance of nitrogen. While not certain, we suspect that these stars resulted from globular cluster destruction. They could also be the byproducts of the first episodes of star formation taking place at the beginning of the Galaxy’s history. We are conducting further observations to test these hypotheses.”

IMPORTANT ARTICLE: Greater Concern of Cosmic Rays Effect to Earth Then I Realized

As you will see from the following article, it is one of many describing findings from the latest research and studies related to galactic cosmic rays. What I find to be a bit perplexing, is the amount and method of delivery from the science community regarding cosmic rays. It would appear scientific data is coming in at record pace via the incredible spacecraft such as  HERSCHEL, PLANK, CHANDRA, and WISE, and researchers are hard pressed to disseminate their findings in published papers.

***Help SoC continue its research with your supportive donation (see bottom of article)

planck_wise_cassini_chandra

As related to my research on the Galaxy-Sun-Earth connection published in 2012, it appears to have hit almost every note presented, however, apparently I under estimated the foretelling possibilities galactic cosmic rays could have on Earth. There is quite a bit of data flowing out, much of which has to do with recent discoveries indicating supernovae explosions hitting Earth; and was the source of at least two ‘mass’ extinctions, and very likely the source of ‘partial’ extinctions.

New Equation:
Increase Charged Particles → Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

_new_equation 2012

There is a great deal to present to you so this will be a 3 or 4 part article with this as Part-I. Below is one of the latest published findings showing the desire to, better and perhaps quickly, understand the pre and post eruptions, and most importantly, the rhythmic cycles.

STAY TUNED…………..

__________________

Keep Science of Cycles Flourishing For All

milky-way-g1.9+0.3

Astronomers have uncovered the strongest evidence yet exhibiting an enormous X-shaped structure made of stars that lies within the central bulge of the Milky Way Galaxy. Previous computer models showing observations of other galaxies – including our own galaxy Milky Way, suggesting the X-shaped structure does exist. However, no one had observed it directly, and some astronomers argued that previous research pointed indirectly to the existence of the X, but that it could be explained in other ways.

Lead author is Melissa Ness, researcher at the Max Planck Institute for Astronomy in Heidelberg, along with Dustin Lang, research associate at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics, and co-author of the paper describing the discovery. Lang says: “Controversy about whether the X-shaped structure existed, but our paper furnishes an authoritative composition of our own Milky Way’s galactic core. The results appear in the July issue of the Astronomical Journal.

galactic-alignment-X

The Milky Way Galaxy is a barred spiral galaxy; a disk-shaped collection of dust, gas and billions of stars, 100,000 light-years in diameter. It is far from a simple disk structure, being comprised of two spiral arms, a bar-shaped feature that runs through its center, and a central bulge of stars. The central bulge, like other barred galaxy’s bulges, resembles a rectangular box or peanut as viewed from within the plane of the galaxy. The X-shaped structure is an integral component of the bulge.

“The bulge is a key signature of formation of the Milky Way Galaxy,” says Ness. “If we understand the bulge we will understand the key processes which had formed and shaped our galaxy.”

“The shape of the bulge tells us about how it has formed. We see the X-shape and boxy morphology so clearly in the WISE image, demonstrating the internal formation processes have been the ones driving the bulge formation.”

Milky_Way_Galactic_Plane2

It is also evidence that our galaxy did not experience major merging events since the bulge formed. If it had, interactions with other galaxies would have disrupted its shape.

Keep Science of Cycles Flourishing For All

_science-of-cycles24_m

 *** Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive from our news service.

If above banner does not work – CLICK HERE

 

New Confirmation Galactic Cosmic Rays Have Increased Intensity

Further confirmation advocating my research related to external sources outside our solar system is synchronous to our interplanetary cycles. The Sun-Earth connection, analogous to its 11, 22 year cycle reacts in congruous with larger galactic cycles of 500, 1,000, 5,000, 44,000, 100,000 (Centrennium) and beyond into (Megaannus) 1,000,000 year cycles.

milky_way_system9_m

Only the most recent research has been able to identify such events as a result of almost magical new hardware of satellites, telescopes, spacecraft, and of course the software that goes with it. You might remember an article I wrote almost 2 years ago, as I reported to you what my sources directly connected to international space agencies, had told to me. It went something like this: “New information is coming in so fast, and is challenging our known formulas, templates, equations etc, we had to shut it down (figuratively) and begin our unsettling task of creating a new paradigm.”

galactic cosmic ray chart

As our brilliant, yet mostly isolated scientific disciplines, have begun to slowly unwind data that reaches memory sizes beyond Terabytes, beyond Petabytes, beyond Exabytes, now beyond Zettabytes, and currently is filling Yottabytes.  As the slow untangling of new insights unfold, we can now see a direct connection to cyclical patterns far beyond our solar system borders and into our home galaxy Milky Way.

Memory Scale: 1 yottabyte = 1024 zettabytes = 1048576 exabytes = 1073741824 petabytes = 1099511627776 terabytes = 1125899906842624 gigabytes.

nagoya

New information collected from neutron monitor measurements from the University of Oulu Cosmic Ray Station intensification of cosmic rays is making itself felt not only over the poles, but also over lower latitudes where Earth’s magnetic field provides a greater degree of protection against deep space radiation.

Earth’s magnetic field is currently weakening more rapidly. Data from the SWARM satellites have shown the field is starting to weaken faster than in the past. Previously, researchers estimated the field was weakening about 5 percent per century, but the new data revealed the field is actually weakening at 5 percent per decade, or 10 times faster than thought.

cosmic ray stream - solar system_m

New Equation:
Increase Charged Particles Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

new_equation 2012

In a recent study using neutron monitor measurements from the University of Oulu Cosmic Ray Station, show an accelerated amount of cosmic rays are now hitting lower latitudes likely due to a weakened magnetic field. This is cause for alert as radiation measurements have increased which could have a long-lasting effect on airline ceilings.

More on this research coming this week…………….

_____________________________

no-paypal-account-needed_sm

If banner is not working click here: http://bit.ly/1IheOn4

**We Are Always in Need of Supplemental Support – Thank You.

paypal-donate_button_sm

If banner is not working click here: http://bit.ly/1GqtVVb