BREAKING NEWS: Earth’s Magnetic Field Continues Decline in Strength and Increase Rate of Movement

Presented at this week’s Living Planet Symposium, new results from the constellation of Swarm satellites show where our protective field is weakening and strengthening, and importantly how fast these changes are taking place.

magnetic field weakening

The Earth’s magnetic north pole is drifting from northern Canada towards Siberia with a presently accelerating rate of 10 kilometers (6.2 mi) per year at the beginning of the 20th century, up to 40 kilometers (25 mi) per year in 2003 – and since then has only accelerated. “At this rate it will exit North America and reach Siberia in a few decades, says scientist Larry Newitt of the Geological Survey of Canada.

magnetic field reversal

In addition, the magnetic north pole is wandering east, towards Asia. The current rate of change (since 1840) is about 0.07 degrees per year. But between 1225 and about 1550 AD, rates averaged closer to 0.12 degrees per year – significantly faster than expected.

VIDEO: Changes in Strength
of Earth’s Magnetic Field

magnetic field weakening3

Based on results from ESA’s Swarm mission, the animation shows how the strength of Earth’s magnetic field has changed between 1999 and mid-2016. Blue depicts where the field is weak and red shows regions where the field is strong. The field has weakened by about 3.5% at high latitudes over North America, while it has grown about 2% stronger over Asia. The region where the field is at its weakest field – the South Atlantic Anomaly – has moved steadily westward and further weakened by about 2%. In addition, the magnetic north pole is wandering east.

cosmic_rays_earth's_core_climate_cycle_lg

With more than two years of measurements by ESA’s Swarm satellite trio, changes in the strength of Earth’s magnetic field are being mapped in detail. It is clear that ESA’s innovative Swarm mission is providing new insights into our changing magnetic field. Further results are expected to lead to new information on many natural processes, from those occurring deep inside the planet to weather in space caused by solar activity.

Swarm_constellation

Launched at the end of 2013, Swarm is measuring and untangling the different magnetic signals from Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere – an undertaking that will take several years to complete.

Although invisible, the magnetic field and electric currents in and around Earth generate complex forces that have immeasurable effects on our everyday lives.

The field can be thought of as a huge bubble, protecting us from cosmic radiation and electrically charged atomic particles that bombard Earth in solar winds. However, it is in a permanent state of flux.

The magnetic field is thought to be produced largely by an ocean of molten, swirling liquid iron that makes up our planet’s outer core, 3000 km under our feet. Acting like the spinning conductor in a bicycle dynamo, it generates electrical currents and thus the continuously changing electromagnetic field.

It is thought that accelerations in field strength are related to changes in how this liquid iron flows and oscillates in the outer core.

Chris Finlay, senior scientist at DTU Space in Denmark, said, “Unexpectedly, we are finding rapid localized field changes that seem to be a result of accelerations of liquid metal flowing within the core.”

Rune Floberghagen, ESA’s Swarm mission manager, added, “Two and a half years after the mission was launched it is great to see that Swarm is mapping the magnetic field and its variations with phenomenal precision.

“The quality of the data is truly excellent, and this paves the way for a profusion of scientific applications as the data continue to be exploited.”

In turn, this information will certainly yield a better understanding of why the magnetic field is weakening in some places, and globally.

BREAKING NEWS: Scientists Detect Unexpected Drop in the Magnetic Field of X-Ray Pulsars

By now, most of you have caught on to my documented hypothesis, now turning to theory, indicating all that we have learned (ongoing) about the Sun-Earth connection directs us to the ‘science of cycles’. This is to say – the better we understand the cycles (rhythm) of events, the better we can prepare for advantageous and disadvantaged events of the future.

_science_ancient_text2

I will place some recent related articles below which I believe leaves a strong paper trail suggesting what we have learned about the cyclical events of the Sun-Earth connection, is mirrored in many ways to most if not all celestial orbs – whether they be pulsars, dwarfs, or galaxies. It is the ‘science of cycles’, which holds true today as it did a millennia or a mega-annum ago. Our ancestors collected and handed down some very valuable knowledge through history; science is just now able to verify it.

earth-magnetic-field-neutron field-diagram5_m

A team of scientists has recently presented evidence of an unexpected drop in the observed magnetic field of an accreting pulsar designated V0332+53. This downturn, observed after the pulsar underwent a bright, three-month-long X-ray outburst, could yield important information on how the added mass settling on the surface of a neutron star affects its magnetic field. The findings are detailed in a paper published online on Apr. 26 in the arXiv journal.

OLYMPUS DIGITAL CAMERA

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser 

– Be part of keeping ‘Science of Cycles’ alive and free.  

– Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.

– CLICK HERE –

V0332+53 is a gathering pulsar emitting X-ray radiation, with a spin period of 4.4 seconds. It orbits an early type companion star in an eccentric orbit of about 34 days. Significantly, this pulsar shows sporadic giant X-ray outbursts lasting several weeks, followed by years-long intervals of dormancy.

pulsar_radiation4

These X-ray outbursts were observed in 1989, between November 2004 and February 2005, and between June and September 2015. The latest outburst drew the attention of a team of researchers, led by Giancarlo Cusumano of the Institute of Space Astrophysics and Cosmic Physics in Palermo, Italy. Using the Burst Alert Telescope (BAT) and the X-Ray Telescope (XRT), both mounted on NASA’s Swift spacecraft, the astronomers were able to observe the pulsar in soft X-ray and high-energy bands.

By studying the results, the team detected a noteworthy drop in the observed magnetic field between the onset and the end of the outburst.

pulsar_radiation2_m

The findings could be crucial for our understanding of the matter accretion processes in neutron stars and could provide new insights on pulsars’ X-ray outburst events. According to the research, the magnetic field of neutron star drives the accumulating matter along its field lines towards the magnetic polar caps, forming an appendage, where matter is followed up by radiative processes that produce X-rays.

FULL ARTICLE: CLICK HERE

________________

Mitch_and_Crew_medd

**Previous Articles Reflecting Battros Hypothesis Turned Theory

JUST IN: New High-Energy Sources of Gamma and Cosmic Rays Discovered

JUST IN: New Maps Chart Mantle Plumes Melting Greenland Glaciers

JUST IN: Scientists Beginning to Identify Signs That  Galactic Cycles are Analogous with Sun-Earth’s Circumvolution

BREAKING NEWS: Powerful Acquiescence of Battros ‘Equation’ in New Discovery – Charged Particle Acceleration

UPDATE: New Sources of Charged Particles Discovered

BREAKING NEWS: A Dramatic Galactic Explosion Arrived at Earth in 2012

 ________________

_science of cycles33

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.          – CLICK HERE – 

paypal donate_button

If banner is not working Click Here