Volcano Watch: Geochemical Detective Work Helps Answer Questions About Kilauea’s Ongoing Eruption

“What’s happening inside the volcano?”

That’s just one of many questions asked about Kilauea’s ongoing lower East Rift Zone eruption. Looking at the geochemistry of erupted lava can help us answer these questions.

Magma supplying Kilauea’s eruption is composed of melt (molten rock), mineral crystals and dissolved gases or gas bubbles (exsolved gases). Elements that make up magma can stay in the melt or can build crystals depending on the magma temperature, pressure and abundance of other elements.

Experimental work found the elements magnesium and calcium move between the melt and specific mineral crystals depending on temperature. So, the amount of magnesium and calcium in lava reflects the temperature of the magma.

Some elements do not fit into any mineral crystals that grow in Hawaiian magma. These elements increase in concentration as magma cools and more crystals form. So, the abundances of these “incompatible” elements reveal if magma has been stored before erupting. If stored long enough, the magma’s composition is changed as crystals grow and the amounts of incompatible elements increase.

When the first lower East Rift Zone lava sample was collected May 3, the University of Hawaii at Hilo geochemistry lab swung into action, working with the USGS Hawaiian Volcano Observatory to determine, within hours, that the erupted lava was from stored magma. The LERZ lava was much cooler (about 1,090 degrees C or 2,000 degrees F) and more “evolved” than any Pu‘u ‘O‘o lava (typically 1,140 degrees C or 2,080 degrees F) erupted during the past 35-plus years. While this finding was not a surprise, it was the first time it was documented during an eruption.

But there was one surprise: Fissure 17 — the only vent not in line with the others — erupted the coolest and most chemically evolved lava ever found on Kilauea. Its temperatures were as low as 1,030 degrees C (1,890 degrees F).

Previous lower rift zone eruptions on Kilauea have shown a similar pattern — evolved magma erupted first followed later by hotter, “fresher” magma. The early LERZ lava erupted in Leilani Estates is similar in composition to the early 1955 lava, which erupted in the same area and seems to be the most likely candidate for the parental source.

Finding evolved magma stored in the lower regions of Kilauea, the site of many past eruptions and intrusions, is to be expected. During past events, not all of the magma reached the surface once the driving pressure was gone. That stored magma then evolved with time.

Because Kilauea is so massive, it can take decades before magma comes back to a given area. During that time, stored magma cools, grows crystals and slowly changes in composition. When a new intrusion forces its way through the volcano and up to the surface, it might encounter one or more of these stored magma bodies. The intrusion magma can push out and/or mix with any stored magma that is still liquid.

As the LERZ eruption continued, samples collected May 11 showed that the lava composition shifted to slightly hotter (1,105 degrees C or 2,020 degrees F) and less evolved magma. Soon afterward, eruptions from fissure 20 produced ‘a‘a flows that rushed to the ocean.

During the next 12 days, the lava chemistry became progressively hotter and less evolved until it leveled out at temperatures of 1,130–1,140 degrees C (2,070–2,085 degrees F). The arrival of this hotter lava preceded the high-volume, sustained eruption of fissure 8, giving scientists a heads-up that something might change.

This new lava includes abundant and visible olivine crystals, some of which resemble the type of olivine crystallizing in summit magma before the LERZ eruption sequence began. The lava composition we see now doesn’t exactly match recent Pu‘u ‘O‘o or summit lavas, but it is similar.

This correlates well with geophysical observations that the volume of the summit collapse is similar in magnitude to the volume of LERZ erupted lava.

Magma travels up to 45 km (28 mi) through Kilauea’s East Rift Zone, cooling and potentially mixing with stored deep-rift magma to create lava of slightly different compositions. Our ongoing geochemical detective work should help us get a better handle on what’s happening inside the volcano.

Volcano activity updates

On Kilauea Volcano’s lower East Rift Zone, lava continued to erupt primarily from fissure 8, feeding a channelized flow northeastward from the vent. The channel then extends west of Kapoho Crater and on to the main ocean entry near Ahalanui. As of July 27, the flow was less than 0.1 mi from the Pohoiki boat ramp at Isaac Hale Beach Park. Sulfur dioxide emissions from the active fissure remain high. Residents in the lower Puna District should stay informed and heed Hawaii County Civil Defense closures, warnings and messages (http://www.hawaiicounty.gov/active-alerts).

At Kilauea’s summit, collapse events continued to occur during the past week, releasing energy equivalent to earthquakes of about magnitude-5.3. Inward slumping of the rim and walls of Halema‘uma‘u continues in response to ongoing subsidence at the summit, resulting in frequent felt earthquakes. Three or more felt reports were submitted for 53 of the earthquakes that occurred in Hawaii during the past week.

At Mauna Loa, HVO seismic and deformation monitoring networks indicate the volcano is no longer at an elevated level of activity. Accordingly, HVO dropped the Mauna Loa alert level to Normal and the aviation color code to Green on June 21. HVO continues to monitor the volcano closely and will report any significant changes.