What Have We Learned from 20 Years of X-rays?

This year marks the 20th anniversary of two landmark missions: the Chandra X-ray Observatory, one of NASA’s Great Observatories, which launched July 23, 1999, and the X-ray Multi-Mirror mission (XMM-Newton), which launched a few months later on December 10th. Together, these satellites revolutionized X-ray astronomy, bringing it on par with astronomy at other wavelengths. We celebrate the history of X-ray astronomy in the August 2019 issue; here, we mark seven discoveries heralded by these two missions.

The Anatomy of a Supernova

To astronomers’ surprise, Chandra’s image of Cassiopeia A, the bloom of gas left over after a massive star went supernova some 340 years ago, revealed a star turned inside out. While massive stars fuse the heaviest elements in their cores and lighter elements in surrounding, onion-like layers, the Cas A explosion had flung clumps of iron to the outermost regions. The find suggests the star’s contents mixed together right before or after its core collapsed (or both).

Stellar Nurseries

XMM-Newton surveyed low-mass stars forming in the Taurus Molecular Cloud while Chandra examined massive stars coming together in the Orion Nebula. Most of the X-rays in these images, including the Chandra Ultra-deep Orion Project pictured above, come from young stars. In some cases interacting stellar winds from massive young stars produce the X-rays. The surveys have given astronomers a wealth of data on the newborn stars’ magnetic fields.

Black Hole Physics

With Chandra and XMM-Newton, astronomers could for the first time estimate black hole spin. By measuring how a black hole’s strong gravity smears the emissions from iron ions, astronomers can see how close the gas comes to the event horizon — the closer it comes, the faster the black hole is spinning. Astronomers have used this and other X-ray-based methods to gauge the spins of dozens of black holes.

Monitoring by Chandra and XMM-Newton has also shed light on the slumbering beast at the center of the Milky Way known as Sgr A*. While Sgr A* doesn’t seem to be devouring gas in the manner of the supermassive black holes that power distant quasars, it’s doing something that sets off roughly daily X-ray flares. Sometimes they’re accompanied by infrared sizzles, but other times the X-rays pop on their own. The flares may originate in snapping magnetic fields, the occasional ingestion of an asteroid, or something else entirely — the jury’s still out.

Jets of Change

The combination of X-ray and radio observations of galaxy clusters solved a long-term mystery: The hot gas between galaxies in clusters ought to cool over time, raining down on the clusters’ central galaxies and forming stars by the handful. But in many clusters astronomers haven’t found the expected stellar newborns. Turns out radio-emitting jets from the central galaxies’ supermassive black holes blow bubbles into the surrounding X-ray-emitting gas, sending out pressure waves that pump heat back into the surrounding medium, which prevents it from cooling. Astronomers soon realized that this concept of “black hole feedback” might affect everything from galaxy evolution to cosmology.

Extragalactic X-ray Background

From the launch of the Aerobee rocket in 1962, astronomers had known that the X-ray sky wasn’t dark, instead teeming with high-energy photons. The Einstein Observatory showed that supermassive black holes, too far away or faint to be seen individually, could explain this background. But it was Chandra that sharpened the view, resolving almost all of the background into its individual sources. Data from Chandra and XMM-Newton suggest that most of the sources that remain undetected are shrouded in gas and dust.

Hot Jupiters and Habitability

X-ray observations have provided direct evidence of star-planet interactions, such as when XMM-Newton caught flares from the HD 17156 system that appeared whenever the hot Jupiter came closest to its star. X-ray data also temper ideas of habitability: XMM-Newton observations revealed that high-energy radiation irradiates the three Earth-size planets in Trappist-1’s so-called habitable zone and has probably long ago stripped them of their atmospheres. Likewise, observations showed that Proxima Centauri b receives 250 times more X-rays from its star than Earth does from the Sun; its habitability, too, is uncertain.

Dark Matter, Dark Energy

Galaxy clusters have proven key to testing dark matter and understanding dark energy. X-ray observations first revealed the wildly hot gas within clusters — gas that would have drifted away if it weren’t for the cluster’s dark matter, which gravitationally holds it in place. Then, astronomers observed clusters dating back to when the universe was less than half its current age, estimating the growth of these huge structures over cosmic time. The result: solid evidence for the existence of dark energy and a unique way to gauge its density and equation of state.

 

UPDATE: New Sources of Charged Particles Discovered

Researchers from the University of Cambridge, used data from the European Space Agency’s (ESA) XMM-Newton space observatory to reveal for the first time strong winds gusting at very high speeds from two mysterious sources of x-ray radiation. The discovery, published in the journal Nature, confirms that these sources conceal a compact object pulling in matter at extraordinarily high rates.

two black holes eating star

Two black holes in nearby galaxies have been observed devouring their companion stars at a rate exceeding classically understood limits, and in the process, kicking out charged particles into surrounding space at astonishing speeds of around a quarter the speed of light.
_____________

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.    – CLICK HERE –

“We think these newly discovered sources we are calling ‘ultra-luminous x-rays’ come from special binary systems, sucking up gas at a much higher rate than an ordinary x-ray binary,” said Dr Ciro Pinto from Cambridge’s Institute of Astronomy, the paper’s lead author. “Some of these sources host highly magnetized neutron stars, while others might conceal the long-sought-after intermediate-mass black holes, which have masses around one thousand times the mass of the Sun. But in the majority of cases, the reason for their extreme behavior is still unclear.”

xmm_newton_esa

Pinto and his colleagues collected several days’ worth of observations of three ultra-luminous x-ray sources, all located in nearby galaxies located less than 22 million light-years from the Milky Way. The data was obtained over several years with the Reflection Grating Spectrometer on XMM-Newton, which allowed the researchers to identify subtle features in the spectrum of the x-rays from the sources.

In all three sources, the scientists were able to identify x-ray emission from gas in the outer portions of the disc surrounding the central compact object, slowly flowing towards it.

ngc_1313_galaxy

But two of the three sources – known as NGC 1313 X-1 and NGC 5408 X-1 – also show clear signs of x-rays being absorbed by gas that is streaming away from the central source at 70,000 kilometers per second – almost a quarter of the speed of light.

“This is the first time we’ve seen winds streaming away from ultra-luminous x-ray sources,” said Pinto. “And the very high speed of these outflows is telling us something about the nature of the compact objects in these sources, which are frantically devouring matter.”

NCG 5408

While the hot gas is pulled inwards by the central object’s gravity, it also shines brightly, and the pressure exerted by the radiation pushes it outwards. This is a balancing act: the greater the mass, the faster it draws the surrounding gas; but this also causes the gas to heat up faster, emitting more light and increasing the pressure that blows the gas away.

There is a theoretical limit to how much matter can be pulled in by an object of a given mass, known as the Eddington limit. The limit was first calculated for stars by astronomer Arthur Eddington, but it can also be applied to compact objects like black holes and neutron stars.

Eddington’s calculation refers to an ideal case in which both the matter being accreted onto the central object and the radiation being emitted by it do so equally in all directions.

But the sources studied by Pinto and his collaborators are potentially being fed through a disc which has been puffed up due to internal pressures arising from the incredible rates of material passing through it. These thick discs can naturally exceed the Eddington limit and can even trap the radiation in a cone, making these sources appear brighter when we look straight at them. As the thick disc moves material further from the black hole’s gravitational grasp it also gives rise to very high-speed winds like the ones observed by the Cambridge researchers.

“By observing x-ray sources that are radiating beyond the Eddington limit, it is possible to study their accretion process in great detail, investigating by how much the limit can be exceeded and what exactly triggers the outflow of such powerful winds,” said Norbert Schartel, ESA XMM-Newton Project Scientist.

The nature of the compact objects hosted at the core of the two sources observed in this study is, however, still uncertain.

Based on the x-ray brightness, the scientists suspect that these mighty winds are driven from accretion flows onto either neutron stars or black holes, the latter with masses of several to a few dozen times that of the Sun.

______________

_science of cycles33

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.

paypal donate_button

If the banner above is not working – CLICK HERE

 

 

UPDATE: New Sources of Charged Particles Discovered

The researchers, from the University of Cambridge, used data from the European Space Agency’s (ESA) XMM-Newton space observatory to reveal for the first time strong winds gusting at very high speeds from two mysterious sources of x-ray radiation. The discovery, published in the journal Nature, confirms that these sources conceal a compact object pulling in matter at extraordinarily high rates.

two black holes eating star

Two black holes in nearby galaxies have been observed devouring their companion stars at a rate exceeding classically understood limits, and in the process, kicking out charged particles into surrounding space at astonishing speeds of around a quarter the speed of light.
_____________

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.    – CLICK HERE –

“We think these newly discovered sources we are calling ‘ultra-luminous x-rays’ come from special binary systems, sucking up gas at a much higher rate than an ordinary x-ray binary,” said Dr Ciro Pinto from Cambridge’s Institute of Astronomy, the paper’s lead author. “Some of these sources host highly magnetized neutron stars, while others might conceal the long-sought-after intermediate-mass black holes, which have masses around one thousand times the mass of the Sun. But in the majority of cases, the reason for their extreme behavior is still unclear.”

xmm_newton_esa

Pinto and his colleagues collected several days’ worth of observations of three ultra-luminous x-ray sources, all located in nearby galaxies located less than 22 million light-years from the Milky Way. The data was obtained over several years with the Reflection Grating Spectrometer on XMM-Newton, which allowed the researchers to identify subtle features in the spectrum of the x-rays from the sources.

In all three sources, the scientists were able to identify x-ray emission from gas in the outer portions of the disc surrounding the central compact object, slowly flowing towards it.

ngc_1313_galaxy

But two of the three sources – known as NGC 1313 X-1 and NGC 5408 X-1 – also show clear signs of x-rays being absorbed by gas that is streaming away from the central source at 70,000 kilometers per second – almost a quarter of the speed of light.

“This is the first time we’ve seen winds streaming away from ultra-luminous x-ray sources,” said Pinto. “And the very high speed of these outflows is telling us something about the nature of the compact objects in these sources, which are frantically devouring matter.”

NCG 5408

While the hot gas is pulled inwards by the central object’s gravity, it also shines brightly, and the pressure exerted by the radiation pushes it outwards. This is a balancing act: the greater the mass, the faster it draws the surrounding gas; but this also causes the gas to heat up faster, emitting more light and increasing the pressure that blows the gas away.

There is a theoretical limit to how much matter can be pulled in by an object of a given mass, known as the Eddington limit. The limit was first calculated for stars by astronomer Arthur Eddington, but it can also be applied to compact objects like black holes and neutron stars.

Eddington’s calculation refers to an ideal case in which both the matter being accreted onto the central object and the radiation being emitted by it do so equally in all directions.

But the sources studied by Pinto and his collaborators are potentially being fed through a disc which has been puffed up due to internal pressures arising from the incredible rates of material passing through it. These thick discs can naturally exceed the Eddington limit and can even trap the radiation in a cone, making these sources appear brighter when we look straight at them. As the thick disc moves material further from the black hole’s gravitational grasp it also gives rise to very high-speed winds like the ones observed by the Cambridge researchers.

“By observing x-ray sources that are radiating beyond the Eddington limit, it is possible to study their accretion process in great detail, investigating by how much the limit can be exceeded and what exactly triggers the outflow of such powerful winds,” said Norbert Schartel, ESA XMM-Newton Project Scientist.

The nature of the compact objects hosted at the core of the two sources observed in this study is, however, still uncertain.

Based on the x-ray brightness, the scientists suspect that these mighty winds are driven from accretion flows onto either neutron stars or black holes, the latter with masses of several to a few dozen times that of the Sun.

______________

_science of cycles33

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.

paypal donate_button

If the banner above is not working – CLICK HERE