Thousands Of Stars Turning Into Crystals

The first direct evidence of white dwarf stars solidifying into crystals has been discovered by astronomers at the University of Warwick, and our skies are filled with them.

Observations have revealed that dead remnants of stars like our Sun, called white dwarfs, have a core of solid oxygen and carbon due to a phase transition during their lifecycle similar to water turning into ice but at much higher temperatures. This could make them potentially billions of years older than previously thought.

The discovery, led by Dr Pier-Emmanuel Tremblay from the University of Warwick’s Department of Physics, has been published in Nature and is largely based on observations taken with the European Space Agency’s Gaia satellite.

White dwarf stars are some of the oldest stellar objects in the universe. They are incredibly useful to astronomers as their predictable lifecycle allows them to be used as cosmic clocks to estimate the age of groups of neighboring stars to a high degree of accuracy. They are the remaining cores of red giants after these huge stars have died and shed their outer layers and are constantly cooling as they release their stored up heat over the course of billions of years.

The astronomers selected 15,000 white dwarf candidates within around 300 light years of Earth from observations made by the Gaia satellite and analysed data on the stars’ luminosities and colours.

They identified a pile-up, an excess in the number of stars at specific colours and luminosities that do not correspond to any single mass or age. When compared to evolutionary models of stars, the pile-up strongly coincides to the phase in their development in which latent heat is predicted to be released in large amounts, resulting in a slowing down of their cooling process. It is estimated that in some cases these stars have slowed down their aging by as much as 2 billion years, or 15 percent of the age of our galaxy.

Dr Tremblay said: “This is the first direct evidence that white dwarfs crystallise, or transition from liquid to solid. It was predicted fifty years ago that we should observe a pile-up in the number of white dwarfs at certain luminosities and colours due to crystallisation and only now this has been observed.

“All white dwarfs will crystallise at some point in their evolution, although more massive white dwarfs go through the process sooner. This means that billions of white dwarfs in our galaxy have already completed the process and are essentially crystal spheres in the sky. The Sun itself will become a crystal white dwarf in about 10 billion years.”

Crystallisation is the process of a material becoming a solid state, in which its atoms form an ordered structure. Under the extreme pressures in white dwarf cores, atoms are packed so densely that their electrons become unbound, leaving a conducting electron gas governed by quantum physics, and positively charged nuclei in a fluid form. When the core cools down to about 10 million degrees, enough energy has been released that the fluid begins to solidify, forming a metallic core at its heart with a mantle enhanced in carbon.

Dr Tremblay adds: “Not only do we have evidence of heat release upon solidification, but considerably more energy release is needed to explain the observations. We believe this is due to the oxygen crystallising first and then sinking to the core, a process similar to sedimentation on a river bed on Earth. This will push the carbon upwards, and that separation will release gravitational energy.

“We’ve made a large step forward in getting accurate ages for these cooler white dwarfs and therefore old stars of the Milky Way. Much of the credit for this discovery is down to the Gaia observations. Thanks to the precise measurements that it is capable of, we have understood the interior of white dwarfs in a way that we never expected. Before Gaia we had 100-200 white dwarfs with precise distances and luminosities — and now we have 200,000. This experiment on ultra-dense matter is something that simply cannot be performed in any laboratory on Earth.”

NASA’s New Horizons Just Made the Most Distant Flyby in Space History

NASA’s unmanned New Horizons spacecraft is closing in on its historic New Year’s flyby target, the most distant world ever studied, a frozen relic of the solar system some four billion miles (6.4 billion kilometers) away. The cosmic object, known as Ultima Thule, is about the size of the US capital, Washington, and orbits in the dark and frigid Kuiper Belt about a billion miles beyond the dwarf planet, Pluto.

The spacecraft’s closest approach to this primitive space rock comes January 1 at 12:33 am ET (0533 GMT). Until then, what it looks like, and what it is made of, remain a mystery.

“This is a time capsule that is going to take us back four and a half billion years to the birth of the solar system,” said Alan Stern, the principal investigator on the project at the Southwest Research Institute, during a press briefing Friday. A camera on board the New Horizons spacecraft is currently zooming in on Ultima Thule, so scientists can get a better sense of its shape and configuration—whether it is one object or several.

“We’ve never been to a type of object like this before,” said Kelsi Singer, New Horizons co-investigator at the Southwest Research Institute. About a day prior, “we will start to see what the actual shape of the object is,” she said. The spacecraft entered “encounter mode” on December 26, and is “very healthy,” added Stern.

Communicating with a spacecraft that is so far away takes six hours and eight minutes each way – or about 12 hours and 15 minutes round trip.

New Horizons’ eagerly awaited “phone home” command, indicating if it survived the close pass – at a distance of just 2,200 miles (3,500 kilometers) is expected January 1 at 10:29 am (1529 GMT). Until then, the New Horizons spacecraft continues speeding through space at 32,000 miles (51,500 kilometers) per hour, traveling almost a million miles per day.
And NASA scientists are eagerly awaiting the first images.

“Because this is a flyby mission, we only have one chance to get it right,” said Alice Bowman, missions operations manager for New Horizons. The spacecraft, which launched in 2006, captured stunning images of Pluto when it flew by the dwarf planet in 2015.

Scientists Find Evidence Of Complex Organic Molecules From Enceladus

Using mass spectrometry data from NASA’s Cassini spacecraft, scientists found that large, carbon-rich organic molecules are ejected from cracks in the icy surface of Saturn’s moon Enceladus. Southwest Research Institute scientists think chemical reactions between the moon’s rocky core and warm water from its subsurface ocean are linked to these complex molecules.

“We are, yet again, blown away by Enceladus. Previously we’d only identified the simplest organic molecules containing a few carbon atoms, but even that was very intriguing,” said SwRI’s Dr. Christopher Glein, a space scientist specializing in extraterrestrial chemical oceanography. He is coauthor of a paper in Nature outlining this discovery. “Now we’ve found organic molecules with masses above 200 atomic mass units. That’s over ten times heavier than methane. With complex organic molecules emanating from its liquid water ocean, this moon is the only body besides Earth known to simultaneously satisfy all of the basic requirements for life as we know it.”

Prior to its deorbit in September of 2017, Cassini sampled the plume of material emerging from the subsurface of Enceladus. The Cosmic Dust Analyzer (CDA) and the SwRI-led Ion and Neutral Mass Spectrometer (INMS) made measurements both within the plume and Saturn’s E-ring, which is formed by plume ice grains escaping Enceladus’ gravity.

“Even after its end, the Cassini spacecraft continues to teach us about the potential of Enceladus to advance the field of astrobiology in an ocean world,” Glein said. “This paper demonstrates the value of teamwork in planetary science. The INMS and CDA teams collaborated to reach a deeper understanding of the organic chemistry of Enceladus’ subsurface ocean than would be possible with only one data set.”

During Cassini’s close flyby of Enceladus on Oct. 28, 2015, INMS detected molecular hydrogen as the spacecraft flew through the plume. Previous flybys provided evidence for a global subsurface ocean residing above a rocky core. Molecular hydrogen in the plume is thought to form by the geochemical interaction between water and rocks in hydrothermal environments.

“Hydrogen provides a source of chemical energy supporting microbes that live in the Earth’s oceans near hydrothermal vents,” said SwRI’s Dr. Hunter Waite, INMS principal investigator who also was a coauthor of the new paper. “Once you have identified a potential food source for microbes, the next question to ask is ‘what is the nature of the complex organics in the ocean?’ This paper represents the first step in that understanding — complexity in the organic chemistry beyond our expectations!”

“The paper’s findings also have great significance for the next generation of exploration,” Glein said. “A future spacecraft could fly through the plume of Enceladus, and analyze those complex organic molecules using a high-resolution mass spectrometer to help us determine how they were made. We must be cautious, but it is exciting to ponder that this finding indicates that the biological synthesis of organic molecules on Enceladus is possible.”

Astronomers See Distant Eruption As Black Hole Destroys Star

For the first time, astronomers have directly imaged the formation and expansion of a fast-moving jet of material ejected when the powerful gravity of a supermassive black hole ripped apart a star that wandered too close to the cosmic monster.

The scientists tracked the event with radio and infrared telescopes, including the National Science Foundation’s Very Long Baseline Array (VLBA), in a pair of colliding galaxies called Arp 299, nearly 150 million light-years from Earth. At the core of one of the galaxies, a black hole 20 million times more massive than the Sun shredded a star more than twice the Sun’s mass, setting off a chain of events that revealed important details of the violent encounter.

Only a small number of such stellar deaths, called tidal disruption events, or TDEs, have been detected, although scientists have hypothesized that they may be a more common occurrence. Theorists suggested that material pulled from the doomed star forms a rotating disk around the black hole, emitting intense X-rays and visible light, and also launches jets of material outward from the poles of the disk at nearly the speed of light.

“Never before have we been able to directly observe the formation and evolution of a jet from one of these events,” said Miguel Perez-Torres, of the Astrophysical Institute of Andalusia in Granada, Spain.

The first indication came on January 30, 2005, when astronomers using the William Herschel Telescope in the Canary Islands discovered a bright burst of infrared emission coming from the nucleus of one of the colliding galaxies in Arp 299. On July 17, 2005, the VLBA revealed a new, distinct source of radio emission from the same location.

“As time passed, the new object stayed bright at infrared and radio wavelengths, but not in visible light and X-rays,” said Seppo Mattila, of the University of Turku in Finland. “The most likely explanation is that thick interstellar gas and dust near the galaxy’s center absorbed the X-rays and visible light, then re-radiated it as infrared,” he added. The researchers used the Nordic Optical Telescope on the Canary Islands and NASA’s Spitzer space telescope to follow the object’s infrared emission.

Continued observations with the VLBA, the European VLBI Network (EVN), and other radio telescopes, carried out over nearly a decade, showed the source of radio emission expanding in one direction, just as expected for a jet. The measured expansion indicated that the material in the jet moved at an average of one-fourth the speed of light. Fortunately, the radio waves are not absorbed in the core of the galaxy, but find their way through it to reach the Earth.

These observations used multiple radio-telescope antennas, separated by thousands of miles, to gain the resolving power, or ability to see fine detail, required to detect the expansion of an object so distant. The patient, years-long data collection rewarded the scientists with the evidence of a jet.

Most galaxies have supermassive black holes, containing millions to billions of times the mass of the Sun, at their cores. In a black hole, the mass is so concentrated that its gravitational pull is so strong that not even light can escape. When those supermassive black holes are actively drawing in material from their surroundings, that material forms a rotating disk around the black hole, and superfast jets of particles are launched outward. This is the phenomenon seen in radio galaxies and quasars.

“Much of the time, however, supermassive black holes are not actively devouring anything, so they are in a quiet state,” Perez-Torres explained. “Tidal disruption events can provide us with a unique opportunity to advance our understanding of the formation and evolution of jets in the vicinities of these powerful objects,” he added.

“Because of the dust that absorbed any visible light, this particular tidal disruption event may be just the tip of the iceberg of what until now has been a hidden population,” Mattila said. “By looking for these events with infrared and radio telescopes, we may be able to discover many more, and learn from them,” he said.

Such events may have been more common in the distant Universe, so studying them may help scientists understand the environment in which galaxies developed billions of years ago.

The discovery, the scientists said, came as a surprise. The initial infrared burst was discovered as part of a project that sought to detect supernova explosions in such colliding pairs of galaxies. Arp 299 has seen numerous stellar explosions, and has been dubbed a “supernova factory.” This new object originally was considered to be a supernova explosion. Only in 2011, six years after discovery, the radio-emitting portion began to show an elongation. Subsequent monitoring showed the expansion growing, confirming that what the scientists are seeing is a jet, not a supernova.

Mattila and Perez-Torres led a team of 36 scientists from 26 institutions around the world in the observations of Arp 299. They published their findings in the 14 June online issue of the journal Science.

The Long Baseline Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Scientists Introduce Cosmochemical Model For Pluto Formation

Southwest Research Institute scientists integrated NASA’s New Horizons discoveries with data from ESA’s Rosetta mission to develop a new theory about how Pluto may have formed at the edge of our solar system.

“We’ve developed what we call ‘the giant comet’ cosmochemical model of Pluto formation,” said Dr. Christopher Glein of SwRI’s Space Science and Engineering Division. The research is described in a paper published online today in Icarus. At the heart of the research is the nitrogen-rich ice in Sputnik Planitia, a large glacier that forms the left lobe of the bright Tombaugh Regio feature on Pluto’s surface. “We found an intriguing consistency between the estimated amount of nitrogen inside the glacier and the amount that would be expected if Pluto was formed by the agglomeration of roughly a billion comets or other Kuiper Belt objects similar in chemical composition to 67P, the comet explored by Rosetta.”

In addition to the comet model, scientists also investigated a solar model, with Pluto forming from very cold ices that would have had a chemical composition that more closely matches that of the Sun.

Scientists needed to understand not only the nitrogen present at Pluto now — in its atmosphere and in glaciers — but also how much of the volatile element potentially could have leaked out of the atmosphere and into space over the eons. They then needed to reconcile the proportion of carbon monoxide to nitrogen to get a more complete picture. Ultimately, the low abundance of carbon monoxide at Pluto points to burial in surface ices or to destruction from liquid water.

“Our research suggests that Pluto’s initial chemical makeup, inherited from cometary building blocks, was chemically modified by liquid water, perhaps even in a subsurface ocean,” Glein said. However, the solar model also satisfies some constraints. While the research pointed to some interesting possibilities, many questions remain to be answered.

“This research builds upon the fantastic successes of the New Horizons and Rosetta missions to expand our understanding of the origin and evolution of Pluto,” said Glein. “Using chemistry as a detective’s tool, we are able to trace certain features we see on Pluto today to formation processes from long ago. This leads to a new appreciation of the richness of Pluto’s ‘life story,’ which we are only starting to grasp.”

New Find Shows Yucatan Peninsula Asteroid Strike Warmed Planet for 100,000 Years

A small team of researchers from the U.S. and Tunisia has found evidence that suggests a huge asteroid that struck the Earth approximately 66 million years ago caused the planet to warm up for approximately 100,000 years. In their paper published in the journal Science, the group describes their study of oxygen ratios in ancient fish bones and what it revealed.

Prior research has shown that approximately 66 million years ago, a massive asteroid struck the Earth at a point near what is now Chicxulub, Mexico. Other studies have suggested the sudden change in climate that resulted is what caused the dinosaurs to go extinct. The belief has been that the smoke and particles thrust into the atmosphere blocked out the sun causing the planet to cool for a long period of time. In this new effort, the researchers suggest the cooling period likely was shorter than thought and that it was followed by a lengthy hot spell. The researchers came to this conclusion by studying the bones and teeth of ancient fish.

The fish remains were sifted from sediment samples collected at a site in El Kef, Tunisia. During the time before and long after the asteroid strike, the area was covered by the Tethys Sea. The researchers looked at oxygen ratios in the fish remains as a means of determining the temperature of the water at the time that the fish died. Collecting samples from different layers allowed for building a temperature timeline that began before the asteroid strike and lasting hundreds of thousands of years thereafter. In looking at their timeline the group found that sea temperatures had risen approximately 5°C not long after the asteroid struck and had stayed at that temperature for approximately 100,000 years.

The researchers suggest the strike by the asteroid very likely released a lot of carbon dioxide into the atmosphere because the ground area where it struck was rich in carbonates. The strike very likely would have also ignited large long-burning forest fires which would have also released a lot of carbon into the air. The evidence suggests that the cooling after the impact was short-lived as massive amounts of carbon dioxide were released into the atmosphere setting off global warming.

The researchers note that a lot more work will need to be done to confirm their findings. Another site will have to be found with similar evidence, for example, to prove that the warming was not localized.

BREAKING NEWS: ‘Lost’ Asteroid To Pass Close To Earth Tuesday Evening

An asteroid that was lost by tracking satellites eight years ago has been spotted again as it prepares to make an unnervingly close pass by the Earth on May 15. While the giant space rock is expected to miss the planet, the asteroid will give sky watchers a chance to see the action unfold live online.

On Nov. 30, 2010, astronomers discovered an asteroid that could be as large as one of the Great Pyramids of ancient Egypt. It passed within nine million miles of Earth and then scientists lost track of it as it headed back to the outer solar system.

Asteroid 2010 WC9, which is about 426 feet in diameter, was observed for too short of a time for astronomers to be able to predict when its orbit might bring it back to our neighborhood.

This same asteroid is back and about to buzz by us about 70 times closer (126,000 miles away) than it did eight years ago. That puts it at about half the distance between the Earth and moon, making it one of the closest approaches ever observed by such a sizable asteroid.

London’s Northolt Branch Observatories, which helped to rediscover the asteroid, will be broadcasting the flyby live on Facebook. Don’t worry, the broadcast won’t be like a countdown to the apocalypse. 2010 WC9 will sail by the planet safely at about 6:05 p.m. Eastern Standard Time on May 15.

While this asteroid isn’t a threat (this time) it does emphasize the need to keep a watchful eye on the sky to catalog and track as many space rocks as possible.

“There are lots of asteroids and comets in our solar system and it’s impossible to predict the trajectories of all of these objects, but we need to try,} University of Saskatchewan astronomy professor Daryl Janzen said in a news release on May 10.

Just last month, astronomers discovered a slightly smaller asteroid just hours before it passed by the Earth and came even closer to hitting the moon.

On the cosmic scale, these asteroids are large enough to do some damage if they were to impact Earth, especially near a populated area. However, they aren’t considered big enough to do the kind of catastrophic damage caused by the space rock believed to have wiped out the dinosaurs.

“There is an extremely low probability of the planet coming into contact with one of these large near-Earth objects in our lifetime, but there is really good evidence that it happened in the past and led to mass extinction on the planet,” Janzen added. “So, although the probability is low, it’s important to discover as many NEOs as we can, so that if one does enter into a collision course with Earth, we can try to do something about it.”