Meteor Turns Turkey’s Sky Green

A stunning video captured the moment a vibrant green fireball streaked across the skies above Turkey.

Taken by Onur Kaçmaz in a playground in the Turkish city of Erzurum on Saturday (Sept. 2), the now-viral video shows the sky and surrounding clouds bathed in a deep-sea snot green as the brilliant object hits the upper atmosphere.

Turkey Fireball Sept. 2, 2023

This event presented an awesome lightshow; however there are times it is far more than a lightshow. Just ten years prior, a larger meteor appeared in the skies over Chelyabinsk Russia, exploding in the lower atmosphere injuring over one thousand people.

 The Chelyabinsk Event
This is the one which should raise those small hairs on your neck. It was February 15, 2013 when residents of the city of Chelyabinsk, Russia, witnessed something few humans ever have. Simply put; this ‘asteroid entering Earth’s atmosphere is then classified as a ‘meteor’. When the now ‘meteor’ is large creating a bright fireball, it is referred to as a ‘bolide’. So when you do your search, you will find the Chelyabinsk Event will be described as a meteor or meteorite causing over a thousand injuries.

Short Video 0.43 seconds CLICK HERE

Long Video 10.11 minutes CLICK HERE

The event was well-documented, almost by accident. Dashboard cameras in cars were very popular in Russia at the time, and many of these cameras captured video recordings of the meteor (the streak of light across the sky) and the great flash that came when the asteroid exploded.’

Scientists estimated its speed at 41,000 miles per hour, or about 50 times the speed of sound. Its tremendous speed was the main factor in its enormous destructive power.

 

Solar Eclipse and Earth Changing Events

Research suggests the sudden temperature fluctuation during the period of a solar eclipse can set in motion a chain of events from Earth’s atmosphere to her ocean bottoms. As the moon cast its shadow along the eclipse path, it presents a sudden and rapid shift in jet stream temperature which in-turn has a direct affect on ocean currents.

Although temperature flux may be subtle, if tectonics are at their tipping point, it would not take much to set them off. Additionally, the rapid temperature change can cause an expansion and contraction of Earth’s lithosphere, even if ever so slight, can set off a chain reaction of tectonic slippage resulting in significant earthquakes and volcanic activity.

GREAT VIDEO – CLICK HERE (time lapsed)

Remember, the majority of volcanoes are submarine (ocean bottom); hence the rapid shift in ocean temperatures is also prone to set off a rippling effect which is often unpredictable due to the spider webbing tentacles which connect a system of mantle plumes and volcanoes.

Watch for significant events to occur over the next ten days. Pay special attention to geographical areas along the path of June 10th 2021 annular eclipse related to Earth Changing Events. (see graphic above)

Stay Tuned For More Latest Research and Development

Galactic Fountains And Carousels: Order Emerging From Chaos

 

Scientists from Germany and the United States have unveiled the results of a newly-completed, state of the art simulation of the evolution of galaxies. TNG50 is the most detailed large-scale cosmological simulation yet. It allows researchers to study in detail how galaxies form, and how they have evolved since shortly after the Big Bang. For the first time, it reveals that the geometry of the cosmic gas flows around galaxies determines galaxies’ structures, and vice versa. The researchers publish their results in two papers in the journal Monthly Notices of the Royal Astronomical Society.

Astronomers running cosmological simulations face a fundamental trade-off: with finite computing power, typical simulations so far have been either very detailed or have spanned a large volume of virtual space, but have so far not been able to do both. Detailed simulations with limited volumes can model no more than a few galaxies, making statistical deductions difficult. Large-volume simulations, in turn, typically lack the details necessary to reproduce many of the small-scale properties we observe in our own Universe, reducing their predictive power.

The TNG50 simulation, which has just been published, manages to avoid this trade-off. For the first time, it combines the idea of a large-scale cosmological simulation — a Universe in a box — with the computational resolution of “zoom” simulations, at a level of detail that had previously only been possible for studies of individual galaxies.

In a simulated cube of space that is more than 230 million light-years across, TNG50 can discern physical phenomena that occur on scales one million times smaller, tracing the simultaneous evolution of thousands of galaxies over 13.8 billion years of cosmic history. It does so with more than 20 billion particles representing dark (invisible) matter, stars, cosmic gas, magnetic fields, and supermassive black holes. The calculation itself required 16,000 cores on the Hazel Hen supercomputer in Stuttgart, working together, 24/7, for more than a year — the equivalent of fifteen thousand years on a single processor, making it one of the most demanding astrophysical computations to date.

The first scientific results from TNG50 are published by a team led by Dr Annalisa Pillepich (Max Planck Institute for Astronomy, Heidelberg) and Dr Dylan Nelson (Max Planck Institute for Astrophysics, Garching) and reveal unforeseen physical phenomena. According to Nelson: “Numerical experiments of this kind are particularly successful when you get out more than you put in. In our simulation, we see phenomena that had not been programmed explicitly into the simulation code. These phenomena emerge in a natural fashion, from the complex interplay of the basic physical ingredients of our model universe.”

TNG50 features two prominent examples for this kind of emergent behaviour. The first concerns the formation of “disc” galaxies like our own Milky Way. Using the simulation as a time machine to rewind the evolution of cosmic structure, researchers have seen how the well-ordered, rapidly rotating disc galaxies (which are common in our nearby Universe) emerge from chaotic, disorganised, and highly turbulent clouds of gas at earlier epochs.

As the gas settles down, newborn stars are typically found on more and more circular orbits, eventually forming large spiral galaxies — galactic carousels. Annalisa Pillepich explains: “In practice, TNG50 shows that our own Milky Way galaxy with its thin disc is at the height of galaxy fashion: over the past 10 billion years, at least those galaxies that are still forming new stars have become more and more disc-like, and their chaotic internal motions have decreased considerably. The Universe was much messier when it was just a few billion years old!”

As these galaxies flatten out, researchers found another emergent phenomenon, involving the high-speed outflows and winds of gas flowing out of galaxies. This launched as a result of the explosions of massive stars (supernovae) and activity from supermassive black holes found at the heart of galaxies. Galactic gaseous outflows are initially also chaotic and flow away in all directions, but over time, they begin to become more focused along a path of least resistance.

In the late universe, flows out of galaxies take the form of two cones, emerging in opposite directions — like two ice cream cones placed tip to tip, with the galaxy swirling at the centre. These flows of material slow down as they attempt to leave the gravitational well of the galaxy’s halo of invisible — or dark — matter, and can eventually stall and fall back, forming a galactic fountain of recycled gas. This process redistributes gas from the centre of a galaxy to its outskirts, further accelerating the transformation of the galaxy itself into a thin disc: galactic structure shapes galactic fountains, and vice versa.

The team of scientists creating TNG50 (based at Max-Planck-Institutes in Garching and Heidelberg, Harvard University, MIT, and the Center for Computational Astrophysics (CCA)) will eventually release all simulation data to the astronomy community at large, as well as to the public. This will allow astronomers all over the world to make their own discoveries in the TNG50 universe — and possibly find additional examples of emergent cosmic phenomena, of order emerging from chaos.

Voyager 2 Reaches Interstellar Space

 

Researchers at the University of Iowa report that the spacecraft Voyager 2 has entered the interstellar medium (ISM), the region of space outside the bubble-shaped boundary produced by wind streaming outward from the sun. Voyager 2, thus, becomes the second human-made object to journey out of our sun’s influence, following Voyager 1’s solar exit in 2012.

In a new study, the researchers confirm Voyager 2’s passage on Nov. 5, 2018, into the ISM by noting a definitive jump in plasma density detected by an Iowa-led plasma wave instrument on the spacecraft. The marked increase in plasma density is evidence of Voyager 2 journeying from the hot, lower-density plasma characteristic of the solar wind to the cool, higher-density plasma of interstellar space. It’s also similar to the plasma density jump experienced by Voyager 1 when it crossed into interstellar space.

“In a historical sense, the old idea that the solar wind will just be gradually whittled away as you go further into interstellar space is simply not true,” says Iowa’s Don Gurnett, corresponding author on the study, published in the journal Nature Astronomy. “We show with Voyager 2 — and previously with Voyager 1 — that there’s a distinct boundary out there. It’s just astonishing how fluids, including plasmas, form boundaries.”

Gurnett, professor emeritus in the UI Department of Physics and Astronomy, is the principal investigator on the plasma wave instrument aboard Voyager 2. He is also the principal investigator on the plasma wave instrument aboard Voyager 1 and authored the 2013 study published in Science that confirmed Voyager 1 had entered the ISM.

Voyager 2’s entry into the ISM occurred at 119.7 astronomical units (AU), or more than 11 billion miles from the sun. Voyager 1 passed into the ISM at 122.6 AU. The spacecraft were launched within weeks of each other in 1977, with different mission goals and trajectories through space. Yet they crossed into the ISM at basically the same distances from the sun.

That gives valuable clues to the structure of the heliosphere — the bubble, shaped much like a wind sock, created by the sun’s wind as it extends to the boundary of the solar system.

“It implies that the heliosphere is symmetric, at least at the two points where the Voyager spacecraft crossed,” says Bill Kurth, University of Iowa research scientist and a co-author on the study. “That says that these two points on the surface are almost at the same distance.”

“There’s almost a spherical front to this,” adds Gurnett. “It’s like a blunt bullet.”

Data from the Iowa instrument on Voyager 2 also gives additional clues to the thickness of the heliosheath, the outer region of the heliosphere and the point where the solar wind piles up against the approaching wind in interstellar space, which Gurnett likens to the effect of a snowplow on a city street.

The Iowa researchers say the heliosheath has varied thickness, based on data showing Voyager 1 sailed 10 AU farther than its twin to reach the heliopause, a boundary where the solar wind and the interstellar wind are in balance and considered the crossing point to interstellar space. Some had thought Voyager 2 would make that crossing first, based on models of the heliosphere.

“It’s kind of like looking at an elephant with a microscope,” Kurth says. “Two people go up to an elephant with a microscope, and they come up with two different measurements. You have no idea what’s going on in between. What the models do is try to take information that we have from those two points and what we’ve learned through the flight and put together a global model of the heliosphere that matches those observations.”

The last measurement obtained from Voyager 1 was when the spacecraft was at 146 AU, or more than 13.5 billion miles from the sun. The plasma wave instrument is recording that the plasma density is rising, in data feeds from a spacecraft now so far away that it takes more than 19 hours for information to travel from the spacecraft to Earth.

“The two Voyagers will outlast Earth,” Kurth says. “They’re in their own orbits around the galaxy for five billion years or longer. And the probability of them running into anything is almost zero.”

“They might look a little worn by then,” Gurnett adds with a smile.

The Iowa study is one of five papers on Voyager 2 published in Nature Astronomy. These papers confirm the passage of Voyager 2 to interstellar space and provide details on the characteristics of the heliopause.

Gurnett and Kurth are the study’s sole authors. Their research was funded by NASA, through a contract with the Jet Propulsion Laboratory.

ESO Telescope Reveals What Could Be The Smallest Dwarf Planet Yet In The Solar System

 

Astronomers using ESO’s SPHERE instrument at the Very Large Telescope (VLT) have revealed that the asteroid Hygiea could be classified as a dwarf planet. The object is the fourth largest in the asteroid belt after Ceres, Vesta and Pallas. For the first time, astronomers have observed Hygiea in sufficiently high resolution to study its surface and determine its shape and size. They found that Hygiea is spherical, potentially taking the crown from Ceres as the smallest dwarf planet in the Solar System.

 

As an object in the main asteroid belt, Hygiea satisfies right away three of the four requirements to be classified as a dwarf planet: it orbits around the Sun, it is not a moon and, unlike a planet, it has not cleared the neighbourhood around its orbit. The final requirement is that it has enough mass for its own gravity to pull it into a roughly spherical shape. This is what VLT observations have now revealed about Hygiea.

“Thanks to the unique capability of the SPHERE instrument on the VLT, which is one of the most powerful imaging systems in the world, we could resolve Hygiea’s shape, which turns out to be nearly spherical,” says lead researcher Pierre Vernazza from the Laboratoire d’Astrophysique de Marseille in France. “Thanks to these images, Hygiea may be reclassified as a dwarf planet, so far the smallest in the Solar System.”

The team also used the SPHERE observations to constrain Hygiea’s size, putting its diameter at just over 430 km. Pluto, the most famous of dwarf planets, has a diameter close to 2400 km, while Ceres is close to 950 km in size.

Surprisingly, the observations also revealed that Hygiea lacks the very large impact crater that scientists expected to see on its surface, the team report in the study published today in Nature Astronomy. Hygiea is the main member of one of the largest asteroid families, with close to 7000 members that all originated from the same parent body. Astronomers expected the event that led to the formation of this numerous family to have left a large, deep mark on Hygiea.

“This result came as a real surprise as we were expecting the presence of a large impact basin, as is the case on Vesta,” says Vernazza. Although the astronomers observed Hygiea’s surface with a 95% coverage, they could only identify two unambiguous craters. “Neither of these two craters could have been caused by the impact that originated the Hygiea family of asteroids whose volume is comparable to that of a 100 km-sized object. They are too small,” explains study co-author Miroslav Bro? of the Astronomical Institute of Charles University in Prague, Czech Republic.

The team decided to investigate further. Using numerical simulations, they deduced that Hygiea’s spherical shape and large family of asteroids are likely the result of a major head-on collision with a large projectile of diameter between 75 and 150 km. Their simulations show this violent impact, thought to have occurred about 2 billion years ago, completely shattered the parent body. Once the left-over pieces reassembled, they gave Hygiea its round shape and thousands of companion asteroids. “Such a collision between two large bodies in the asteroid belt is unique in the last 3-4 billion years,” says Pavel Ševe?ek, a PhD student at the Astronomical Institute of Charles University who also participated in the study.

Studying asteroids in detail has been possible thanks not only to advances in numerical computation, but also to more powerful telescopes. “Thanks to the VLT and the new generation adaptive-optics instrument SPHERE, we are now imaging main belt asteroids with unprecedented resolution, closing the gap between Earth-based and interplanetary mission observations,” Vernazza concludes.

Astronomers Catch Wind Rushing Out Of Galaxy

 

Exploring the influence of galactic winds from a distant galaxy called Makani, UC San Diego’s Alison Coil, Rhodes College’s David Rupke and a group of collaborators from around the world made a novel discovery. Published in Nature, their study’s findings provide direct evidence for the first time of the role of galactic winds — ejections of gas from galaxies — in creating the circumgalactic medium (CGM). It exists in the regions around galaxies, and it plays an active role in their cosmic evolution. The unique composition of Makani — meaning wind in Hawaiian — uniquely lent itself to the breakthrough findings.

“Makani is not a typical galaxy,” noted Coil, a physics professor at UC San Diego. “It’s what’s known as a late-stage major merger — two recently combined similarly massive galaxies, which came together because of the gravitational pull each felt from the other as they drew nearer. Galaxy mergers often lead to starburst events, when a substantial amount of gas present in the merging galaxies is compressed, resulting in a burst of new star births. Those new stars, in the case of Makani, likely caused the huge outflows — either in stellar winds or at the end of their lives when they exploded as supernovae.”

Coil explained that most of the gas in the universe inexplicably appears in the regions surrounding galaxies — not in the galaxies. Typically, when astronomers observe a galaxy, they are not witnessing it undergoing dramatic events — big mergers, the rearrangement of stars, the creation of multiple stars or driving huge, fast winds.

“While these events may occur at some point in a galaxy’s life, they’d be relatively brief,” noted Coil. “Here, we’re actually catching it all right as it’s happening through these huge outflows of gas and dust.”

Coil and Rupke, the paper’s first author, used data collected from the W. M. Keck Observatory’s new Keck Cosmic Web Imager (KCWI) instrument, combined with images from the Hubble Space Telescope and the Atacama Large Millimeter Array (ALMA), to draw their conclusions. The KCWI data provided what the researchers call the “stunning detection” of the ionized oxygen gas to extremely large scales, well beyond the stars in the galaxy. It allowed them to distinguish a fast gaseous outflow launched from the galaxy a few million year ago, from a gas outflow launched hundreds of millions of years earlier that has since slowed significantly.

“The earlier outflow has flowed to large distances from the galaxy, while the fast, recent outflow has not had time to do so,” summarized Rupke, associate professor of physics at Rhodes College.

From the Hubble, the researchers procured images of Makani’s stars, showing it to be a massive, compact galaxy that resulted from a merger of two once separate galaxies. From ALMA, they could see that the outflow contains molecules as well as atoms. The data sets indicated that with a mixed population of old, middle-age and young stars, the galaxy might also contain a dust-obscured accreting supermassive black hole. This suggests to the scientists that Makani’s properties and timescales are consistent with theoretical models of galactic winds.

“In terms of both their size and speed of travel, the two outflows are consistent with their creation by these past starburst events; they’re also consistent with theoretical models of how large and fast winds should be if created by starbursts. So observations and theory are agreeing well here,” noted Coil.

Rupke noticed that the hourglass shape of Makani’s nebula is strongly reminiscent of similar galactic winds in other galaxies, but that Makani’s wind is much larger than in other observed galaxies.

“This means that we can confirm it’s actually moving gas from the galaxy into the circumgalactic regions around it, as well as sweeping up more gas from its surroundings as it moves out,” Rupke explained. “And it’s moving a lot of it — at least one to 10 percent of the visible mass of the entire galaxy — at very high speeds, thousands of kilometers per second.”

Rupke also noted that while astronomers are converging on the idea that galactic winds are important for feeding the CGM, most of the evidence has come from theoretical models or observations that don’t encompass the entire galaxy.

“Here we have the whole spatial picture for one galaxy, which is a remarkable illustration of what people expected,” he said. “Makani’s existence provides one of the first direct windows into how a galaxy contributes to the ongoing formation and chemical enrichment of its CGM.”

This study was supported by the National Science Foundation (collaborative grant AST-1814233, 1813365, 1814159 and 1813702), NASA (award SOF-06-0191, issued by USRA), Rhodes College and the Royal Society.

New Measurement Of Hubble Constant Adds To Cosmic Mystery

 

New measurements of the rate of expansion of the universe, led by astronomers at the University of California, Davis, add to a growing mystery: Estimates of a fundamental constant made with different methods keep giving different results.

“There’s a lot of excitement, a lot of mystification and from my point of view it’s a lot of fun,” said Chris Fassnacht, professor of physics at UC Davis and a member of the international SHARP/H0LICOW collaboration, which made the measurement using the W.M. Keck telescopes in Hawaii.

A paper about the work is published by the Monthly Notices of the Royal Astronomical Society.

The Hubble constant describes the expansion of the universe, expressed in kilometers per second per megaparsec. It allows astronomers to figure out the size and age of the universe and the distances between objects.

Graduate student Geoff Chen, Fassnacht and colleagues looked at light from extremely distant galaxies that is distorted and split into multiple images by the lensing effect of galaxies (and their associated dark matter) between the source and Earth. By measuring the time delay for light to make its way by different routes through the foreground lens, the team could estimate the Hubble constant.

Using adaptive optics technology on the W.M. Keck telescopes in Hawaii, they arrived at an estimate of 76.8 kilometers per second per megaparsec. As a parsec is a bit over 30 trillion kilometers and a megaparsec is a million parsecs, that is an excruciatingly precise measurement. In 2017, the H0LICOW team published an estimate of 71.9, using the same method and data from the Hubble Space Telescope.

Hints of new physics

The new SHARP/H0LICOW estimates are comparable to that by a team led by Adam Reiss of Johns Hopkins University, 74.03, using measurements of a set of variable stars called the Cepheids. But it’s quite a lot different from estimates of the Hubble constant from an entirely different technique based on the cosmic microwave background. That method, based on the afterglow of the Big Bang, gives a Hubble constant of 67.4, assuming the standard cosmological model of the universe is correct.

An estimate by Wendy Freedman and colleagues at the University of Chicago comes close to bridging the gap, with a Hubble constant of 69.8 based on the luminosity of distant red giant stars and supernovae.

A difference of 5 or 6 kilometers per second over a distance of over 30 million trillion kilometers might not seem like a lot, but it’s posing a challenge to astronomers. It might provide a hint to a possible new physics beyond the current understanding of our universe.

On the other hand, the discrepancy could be due to some unknown bias in the methods. Some scientists had expected that the differences would disappear as estimates got better, but the difference between the Hubble constant measured from distant objects and that derived from the cosmic microwave background seems to be getting more and more robust.

“More and more scientists believe there’s a real tension here,” Chen said. “If we try to come up with a theory, it has to explain everything at once.”

Additional authors on the paper are: Sherry Suyu, Inh Jee and Simona Vegetti, Max Planck Institute for Astrophysics, Garching, Germany; Cristian Rusu, National Astronomical Observatory of Japan, Tokyo; James Chan, Vivien Bonvin, Martin Millon and Frederic Courbin, Ecole Polytechnique Federale de Lausanne, Switzerland; Kenneth Wong and Alessandro Sonnenfeld, Kavli Institute for the Physics and Mathematics of the Universe, Tokyo; Matthew Auger, University of Cambridge, U.K.; Stefan Hilbert, Exzellenzcluster Universe, Garching, Germany; Simon Birrer, Xuheng Ding, Anowar Shajib and Tommaso Treu, UCLA; Leon Koopmans and John McKean, University of Groningen, the Netherlands; David Lagattuta, Centre de Recherche Astrophysique de Lyon, France; Aleksi Holkala, Tuusula, Finland; and Dominique Sluse, Leiden University, the Netherlands.

The work was funded by the National Science Foundation.