Earth-Like Planet May Exist in Nearby Star System

An Earth-like planet may be lurking in a star system located just 16 light years away, according to a new research. The star, named Gliese 832, was recently investigated by a team of astronomers searching for additional exoplanets that may be residing between the two currently known alien worlds in this system. A paper detailing the finding was published online on Apr. 15 in the arXiv journal.

earth like planet

Gliese 832 is a red dwarf and has just under half the mass and radius of our Sun. The star is orbited by a giant Jupiter-like exoplanet designated Gliese 832b and by a super-Earth mass planet Gliese 832c. The gas giant, with a mass of 0.64 Jupiter masses, is orbiting the star at a distance of 3.53 AU, while the other planet is potentially a rocky world, around five times more massive than the Earth, residing very close its host star—about 0.16 AU.

Now, a team of astronomers, led by Suman Satyal of the University of Texas at Arlington, has reanalyzed the available data on this nearby planetary system hoping to find more extrasolar worlds that may be located in a vast space between the two known planets. The researchers have conducted numerical simulations to check the possibility of existence of other celestial bodies around the red dwarf.

Gliese 832b and Gliese 832c were discovered by the radial velocity technique, from which the scientists extracted the orbital parameters by using the best-fit solutions. These parameters were used as the initial conditions for starting their simulations.

“We also used the integrated data from the time evolution of orbital parameters to generate the synthetic radial velocity curves of the known and the Earth-like planets in the system. Moreover, based on the maximum amplitude of the radial velocity curve obtained from the observation of the inner planet, the approximate mass and distance from the star for the Earth-like planet were computed using the radial velocity signature of the Keplerian motion,” the researchers wrote in the paper.

The team’s computations revealed that an additional Earth-like planet with a dynamically stable configuration may be residing at a distance ranging from 0.25 to 2.0 AU from the star. According to the measurements, this hypothetical alien world would probably be more massive than our planet with a mass between one to 15 Earth’s masses.

“We obtained several radial velocity curves for varying masses and distances for the middle planet,” the astronomers noted.

For instance, if the planet is located around one AU from the star, it has an upper mass limit of ten Earth masses and a generated radial velocity signal of 1.4 m/s. A planet with about the mass of the Earth at the same location would have radial velocity signal of only 0.14 m/s, thus much smaller.

In general, the existence of this possible planet is supported by long-term orbital stability of the system, orbital dynamics and the synthetic radial velocity signal analysis.

The scientists emphasized that their main goal was to provide a general idea to the observers of where and what to look for in this system. They concluded that a significantly large number of radial velocity observations, transit method studies, as well as the direct imaging are still needed to confirm the presence of possible new planets in the Gliese 832 system.

NASA Missions Measure Solar Flare Electromagnetic Phenomenon

Solar flares are intense bursts of light from the Sun. They are created when complicated magnetic fields suddenly and explosively rearrange themselves, converting magnetic energy into light through a process called magnetic reconnection – at least, that’s the theory, because the signatures of this process are hard to detect. But during a December 2013 solar flare, three solar observatories captured the most comprehensive observations of an electromagnetic phenomenon called a current sheet, strengthening the evidence that this understanding of solar flares is correct.

eclectromagnetic sheet

These eruptions on the Sun eject radiation in all directions. The strongest solar flares can impact the ionized part of Earth’s atmosphere – the ionosphere – and interfere with our communications systems, like radio and GPS, and also disrupt onboard satellite electronics. Additionally, high-energy particles – including electrons, protons and heavier ions – are accelerated by solar flares.

Unlike other space weather events, solar flares travel at the speed of light, meaning we get no warning that they’re coming. So scientists want to pin down the processes that create solar flares – and even some day predict them before our communications can be interrupted.

Image converted using ifftoany

“The existence of a current sheet is crucial in all our models of solar flares,” said James McAteer, an astrophysicist at New Mexico State University in Las Cruces and an author of a study on the December 2013 event, published on April 19, 2016, in the Astrophysical Journal Letters. “So these observations make us much more comfortable that our models are good.”

And better models lead to better forecasting, said Michael Kirk, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. “These complementary observations allowed unprecedented measurements of magnetic reconnection in three dimensions,” Kirk said. “This will help refine how we model and predict the evolution of solar flares.”

A current sheet is a very fast, very flat flow of electrically-charged material, defined in part by its extreme thinness compared to its length and width. Current sheets form when two oppositely-aligned magnetic fields come in close contact, creating very high magnetic pressure. Electric current flowing through this high-pressure area is squeezed, compressing it down to a very fast and thin sheet. It’s a bit like putting your thumb over the opening of a water hose – the water, or, in this case, the electrical current, is forced out of a tiny opening much, much faster. This configuration of magnetic fields is unstable, meaning that
the same conditions that create current sheets are also ripe for magnetic reconnection.

“Magnetic reconnection happens at the interface of oppositely-aligned magnetic fields,” said Chunming Zhu, a space scientist at New Mexico State University and lead author on the study. “The magnetic fields break and reconnect, leading to a transformation of the magnetic energy into heat and light, producing a solar flare.”

Because current sheets are so closely associated with magnetic reconnection, observing a current sheet in such detail backs up the idea that magnetic reconnection is the force behind solar flares.

“You have to be watching at the right time, at the right angle, with the right instruments to see a current sheet,” said McAteer. “It’s hard to get all those ducks in a row.”

This isn’t the first time scientists have observed a current sheet during a solar flare, but this study is unique in that several measurements of the current sheet – such as speed, temperature, density and size – were observed from more than one angle or derived from more than method.

This multi-faceted view of the December 2013 flare was made possible by the wealth of instruments aboard three solar-watching missions: NASA’s Solar Dynamics Observatory, or SDO, NASA’s Solar and Terrestrial Relations Observatory, or STEREO – which has a unique viewing angle on the far side of the Sun – and Hinode, which is a collaboration between the space agencies of Japan, the United States, the United Kingdom and Europe led by the Japan Aerospace Exploration Agency.

Even when scientists think they’ve spotted something that might be a current sheet in solar data, they can’t be certain without ticking off a long list of attributes. Since this current sheet was so well-observed, the team was able to confirm that its temperature, density, and size over the course of the event were consistent with a current sheet.

As scientists work up a better picture of how current sheets and magnetic reconnection lead to solar eruptions, they’ll be able to produce better models of the complex physics happening there – providing us with ever more insight on how our closest star affects space all around us.

This research was funded by a CAREER grant from the National Science Foundation awarded to James McAteer.

JUST IN: New High-Energy Sources of Gamma and Cosmic Rays Discovered

A new sky map using the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory shows many new gamma ray sources within our own Milky Way galaxy. HAWC gives us a new way to see the high-energy sky. “This new data from HAWC shows the galaxy in unprecedented detail, revealing new high-energy sources and previously unseen details about existing sources.” said Jordan Goodman, professor of physics at the University of Maryland.

gamma ray burst233

Today, scientists operating HAWC released a new survey of the sky made from the highest energy gamma rays ever observed. The new sky map, which uses data collected since the observatory began running at full capacity last March, offers a deeper understanding of high-energy processes taking place in our galaxy and beyond.

In a region of the Milky Way where researchers previously identified a single gamma ray source named TeV J1930+188, HAWC identified several hot spots, indicating that the region is more complicated than previously thought.

new_equation 2012_m

New Equation:
Increase Charged Particles  and Decreasing Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

“Studying these objects at the highest energies can reveal the mechanism by which they produce gamma rays and possibly help us unravel the hundred-year-old mystery of the origin of high-energy cosmic rays that bombard Earth from space,” said Goodman.


HAWC-located 13,500 feet above sea level on the slopes of Mexico’s Volcán Sierra Negra-contains 300 detector tanks, each holding 50,000 gallons of ultrapure water with four light sensors anchored to the floor. When gamma rays or cosmic rays reach Earth’s atmosphere they set off a cascade of charged particles, and when these particles reach the water in HAWC’s detectors, they produce a cone-shaped flash of light known as Cherenkov radiation. The effect is much like a sonic boom produced by a supersonic jet, because the particles are traveling slightly faster than the speed of light in water when they enter the detectors.

HAWC Gamma-ray Observatory

Because HAWC observes 24 hours per day and year-round with a wide field-of-view and large area, the observatory boasts a higher energy reach for extended objects. In addition, HAWC can uniquely monitor for gamma ray flares by sources in our galaxy and other active galaxies, such as Markarian 421 and Markarian 501.

UPDATE: Supernova Iron Found on the Moon

Now scientists at the Technical University of Munich (TUM), together with colleagues from the US, have found increased concentrations of this supernova-iron in lunar samples as well. They believe both discoveries to originate from the same stellar explosion.


A dying star ends its life in a cataclysmic explosion, shooting the majority of the star’s material, primarily new chemical elements created during the explosion, out into space.

One or more such supernovae appear to have occurred close to our solar system approximately two million years ago. Evidence of the fact has been found on the Earth in the form of increased concentrations of the iron isotope 60Fe detected in Pacific Ocean deep-sea crusts and in ocean-floor sediment samples.

_science of cycles fundraiser

This evidence is highly compelling: The radioactive 60Fe isotope is created almost exclusively in supernova explosions. And with a half-life of 2.62 million years, relatively short compared to the age of our solar system, any radioactive 60Fe originating from the time of the solar system’s birth should have long ago decayed into stable elements and thus should no longer be found on the Earth.

moon supernova3

This supernova hypothesis was first put forth in 1999 by researchers at the Technical University of Munich (TUM) who had found initial evidence in a deep-sea crust. Now their claim has received further substantiation: Physicists at the TUM and their colleagues from the US have succeeded in demonstrating an unusually high concentration of 60Fe in lunar ground samples as well.

The samples were gathered between 1969 and 1972 during Apollo lunar missions 12, 15 and 16, which brought the lunar material back to Earth.


It’s also conceivable that 60Fe can occur on the moon as the result of bombardment with cosmic particles, since these particles do not break up when colliding with air molecules, as is the case with the Earth’s atmosphere. Instead, they directly impact the lunar surface and can thus result in transmutation of elements. “But this can only account for a very small portion of the 60Fe found,” explains Dr. Gunther Korschinek, physicist at TUM and scientist of the Cluster of Excellence Structure and Origin of the Universe.

Since the moon generally provides a better cosmic record than the Earth, the scientists were also able to specify for the first time an upper limit for the flow of 60Fe that must have reached the moon. Among other athings, this also makes it possible for the researchers to infer the distance to the supernova event: “The measured 60Fe-flow corresponds to a supernova at a distance of about 300 light years,” says Korschinek. “This value is in good agreement with a recently theoretical estimation published in Nature.”

Interstellar Dust From Beyond Our Solar System Analyzed

Interstellar dust is one of the last bastions of the unknown in space, its individual particles being only about 200 nanometers in size and very hard to find,” explains Prof. Dr. Mario Trieloff, Earth scientist from Heidelberg University. The dust is part of the interstellar material consisting of gas and helium, as well as heavy metals, and which can arise from the condensation processes of stars and planets. These particles are the raw material that were the main building blocks for Earth and other terrestrial planets.


When it comes to studying interstellar dust, science has so far depended on particles reaching our solar system. The Stardust space probe was already able to capture particles of the very weak flux crossing our solar system. “But these particles were unusually large, so the research findings are possibly not representative,” Prof. Trieloff says. By contrast, the Cassini probe could identify 36 particles of interstellar dust among millions of planetary dust particles. Furthermore the CDA is in a position to analyze them on the spot with the assistance of mass spectrometry. This has enabled much more precise results than before.

Dr. Frank Postberg, on a Heisenberg grant at the Institute for Earth Science, notes that mass spectrometric measurements can now be made for the first time on “a statistically significant quantity of such dust particles.” This process had only become possible through a complex series of tests conducted in Heidelberg to calibrate laboratory models of the CDA. To achieve this aim, silicate dust had to be accelerated in the laboratory to upwards of 40 km a second, which is roughly the speed of interstellar dust.

“The result of the measurements was truly amazing,” Dr. Postberg reports. “The 36 particles of interstellar origin, that are very similar in their composition, contain a mix of the most important rock-forming elements — magnesium, iron, silicon and calcium — in average cosmic abundance. Although a dust particle has a mass of less than a trillionth of a gram, the whole element mix of the cosmos is collected there, with the exception of very volatile gases. Such particles cannot be found in our solar system.” Most scientists had expected dust populations with different compositions, corresponding to the different processes of origin in atmospheres of dying stars. These differences are also found in the stellar dust of meteorites, which is highly individual in its isotope composition. “Our data tells a completely different story,” he underlines.

According to the scientists, the dust has lost its individuality because it was homogenized in the cosmic “witch’s cauldron” of the interstellar medium. It contains gigantic, million-degree hot bubbles of supernova explosions, whose edges arise from shock fronts expanding at hundreds of kilometers per second, explains Dr. Nicolas Altobelli, who is the first author and a scientist at the European Space Agency (ESA).

There had already been a theory, he says, that interstellar dust can survive this energy-rich environment for only a few hundred million years and that very few “lucky survivors” succeed in reaching newly forming planetary systems as intact stellar dust. The latest research results now confirm that most particles are destroyed and reformed in molecular clouds, i.e. cool, dense regions of outer space. Interstellar winds bring these particles as homogenized dust into our solar system.

Do Black Holes Really Suck In All Matter?

black-hole empty matter

For the last four years, physicists studying the mathematical underpinnings of black holes have been wrestling with a strange idea; that black holes contain a region known as a “firewall,” which would stop matter from entering. However, a new paper titled Naked Black Hole Firewalls.

For the last four years, physicists studying the mathematical underpinnings of black holes have been wrestling with a strange idea; that black holes contain a region known as a “firewall,” which would stop matter from entering. However, a new paper titled Naked Black Hole Firewalls.

black-hole empty matter

“The hypothetical black hole firewall is one of the hottest problems in physics today, and we hope that our paper makes a significant contribution to the field,” says of Alberta physics professor Don N. Page.

Page’s contributors include Pisin Chen of the National Taiwan University and Stanford University, Yen Chin Ong of the Nordic Institute for Theoretical Physics (Nordita), Misao Sasaki of Kyoto University and Dong-han Yeom of the National Taiwan University.

The classic picture of a black hole comes directly from Einstein’s theory of general relativity: a massive object that warps the fabric of space-time and becomes so steep that not even light has sufficient speed to escape.

In the 1970s, physicist Stephen Hawking proposed that some particles could in fact escape from a black hole through a process involving the creation of entangled particles, in a theory now known as Hawking radiation. Since then, the field of black hole physics has been a wellspring of interesting phenomena, requiring the mathematics of both quantum theory and general relativity for a complete description.

In quantum mechanics, the two principles of quantum determinism and reversibility suggest that information must always be preserved. But since material falling into a black hole – along with the information describing that material, it be lost sometime after they cross the event horizon.

“If a firewall exists, not only would an in-falling object be destroyed by it, but the destruction could be visible, even from the outside,” says Misao Sasaki, of Yukawa Institute for Theoretical Physics in Kyoto, Japan.

If a firewall actually exists, the authors argue that it would not simply be confined to a region within the black hole, but its destructive power could reach beyond the limits of the event horizon, into a region of space that could be observed. This makes the notion of firewalls less conservative than previously thought, and suggests putting more effort into finding a better solution to the firewall paradox.

BREAKING NEWS: New Discovery of Mysterious Alignment of Black Holes

Deep radio imaging by researchers in the University of Cape Town and University of the Western Cape, in South Africa, has revealed that supermassive black holes in a region of the distant universe are all spinning out radio jets in the same direction. The astronomers publish their results to the Royal Astronomical Society.


The jets are produced by the supermassive black holes at the center of these galaxies, and the only way for this alignment to exist is if supermassive black holes are all spinning in the same direction, says Prof Andrew Russ Taylor, joint UWC/UCT SKA Chair, Director of the recently-launched Inter-University Institute for Data Intensive Astronomy, and principal author of the Monthly Notices study.

galactic jets4

Earlier observational studies had previously detected deviations from uniformity (so-called isotropy) in the orientations of galaxies. But these sensitive radio images offer a first opportunity to use jets to reveal alignments of galaxies on physical scales of up to 100 Mpc. And measurements from the total intensity radio emission of galaxy jets have the advantage of not being affected by effects such as scattering, extinction and Faraday Radiation, which may be an issue for other studies.

bipolar jets

So what could these large-scale environmental influences during galaxy formation or evolution have been? There are several options: cosmic magnetic fields; fields associated with exotic particles (axions); and cosmic strings are only some of the possible candidates that could create an alignment in galaxies even on scales larger than galaxy clusters. It’s a mystery, and it’s going to take a while for technology and theory alike to catch up.


New Equation:
Increase Charged Particles  and Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)


The finding wasn’t planned for: the initial investigation was to explore the faintest radio sources in the universe, using the best available telescopes – a first view into the kind of universe that will be revealed by the South African MeerKAT radio telescope and the Square Kilometer Array (SKA), the world’s most powerful radio telescope and one of the biggest scientific instruments ever devised.

ancient black hole

UWC Prof Romeel Dave, SARChI Chair in Cosmology with Multi-Wavelength Data, who leads a team developing plans for universe simulations that could explore the growth of large-scale structure from a theoretical perspective, agrees: “This is not obviously expected based on our current understanding of cosmology. It’s a bizarre finding.”

_science of cycles banner590x242Mitch Battros and Science of Cycles
Research Sponsorship Fundraiser

paypal fundraiser banner2

Help sponsor this drive with $10 or $10,000 – Current donation: $100
If above banner does not work – CLICK HERE