Yellowstone Super-Volcano Has A Different History Than Previously Thought

The long-dormant Yellowstone super-volcano in the American West has a different history than previously thought, according to a new study by a Virginia Tech geoscientist.

Scientists have long thought that Yellowstone Caldera, part of the Rocky Mountains and located mostly in Wyoming, is powered by heat from the Earth’s core, similar to most volcanoes such as the recently active Kilauea volcano in Hawaii. However, new research published in Nature Geoscience by Ying Zhou, an associate professor with the Virginia Tech College of Science’s Department of Geosciences, shows a different past.

“In this research, there was no evidence of heat coming directly up from the Earth’s core to power the surface volcano at Yellowstone,” Zhou said. “Instead, the underground images we captured suggest that Yellowstone volcanoes were produced by a gigantic ancient oceanic plate that dove under the Western United States about 30 million years ago. This ancient oceanic plate broke into pieces, resulting in perturbations of unusual rocks in the mantle which led to volcanic eruptions in the past 16 million years.”

The eruptions were very explosive, Zhou added. A theoretical seismologist, Zhou created X-ray-like images of the Earth’s deep interior from USArray — part of the Earthscope project funded by the National Science Foundation — and discovered an anomalous underground structure at a depth of about 250 to 400 miles right beneath the line of volcanoes.

“This evidence was in direct contradiction to the plume model,” Zhou said.

In her study, Zhou found the new images of the Earth’s deep interior showed that the oceanic Farallon plate, which used to be where the Pacific Ocean is now, wedged itself beneath the present-day Western United States. The ancient oceanic plate was broken into pieces just like the seafloor in the Pacific today. A section of the subducted oceanic plate started tearing off and sinking down to the deep earth.

The sinking section of oceanic plate slowly pushed hot materials upward to form the volcanoes that now make up Yellowstone. Further, the series of volcanoes that make up Yellowstone have been slowly moving, achingly so, ever since. “The process started at the Oregon-Idaho border about 16 million years ago and propagated northwestward, forming a line of volcanoes that are progressively younger as they stretched northwest to present-day Wyoming,” Zhou added.

The previously-held plume model was used to explain the unique Yellowstone hotspot track — the line of volcanoes in Oregon, Idaho, and Wyoming that dots part of the Midwest. “If the North American plate was moving slowly over a position-fixed plume at Yellowstone, it will displace older volcanoes towards the Oregon-Idaho border and form a line of volcanoes, but such a deep plume has not been found.” Zhou said. So, what caused the track? Zhou intends to find out.

“It has always been a problem there, and scientists have tried to come up with different ways to explain the cause of Yellowstone volcanoes, but it has been unsuccessful,” she said, adding that hotspot tracks are more popular in oceans, such as the Hawaii islands. The frequent Geyser eruptions at Yellowstone are of course not volcanic eruptions with magna, but due to super-heated water. The last Yellowstone super eruption was about 630,000 years ago, according to experts. Zhou has no predictions on when or if Yellowstone could erupt again.

The use of the X-ray-like images for this study is unique in itself. Just as humans can see objects in a room when a light is on, Zhou said seismometers can see structures deep within the earth when an earthquake occurs. The vibrations spread out and create waves when they hit rocks. The waves are detected by seismometers and used in what is known as diffraction tomography.

“This is the first time the new imaging theory has been applied to this type of seismic data, which allowed us to see anomalous structures in the Earth’s mantle that would otherwise not be resolvable using traditional methods,” Zhou said.

Zhou will continue her study of Yellowstone. “The next step will be to increase the resolution of the X-ray-like images of the underground rock,” she added.

“More detailed images of the unusual rocks in the deep earth will allow us to use computer simulation to recreate the fragmentation of the gigantic oceanic plate and test different scenarios of how rock melting and magma feeding system work for the Yellowstone volcanoes.”

Sounds Of The Sun: Listen To The Eruption-Revealing Hum Of Our Star

NASA has released a series of sound clips revealing what the motion of our Sun actually sounds like.

For years, scientists have been studying the dynamics of the Solar System, an effort aimed at observing different objects sitting in our neighborhood including its only star — the Sun.

The work, conducted with different space missions, has given us a lot to learn, but despite hosting some of the finest ground and space-based telescopes, we still have no definite way to peer deep inside the corona or the atmosphere of the Sun.

In order to fully understand the dynamics of our star, it is very essential to know what’s happening within it. The lack of tools limits our capacity in this area, but, the data collected by NASA’s Solar and Heliospheric Observatory (SOHO) and the European Space Agency (ESA) has given us a way to hear the vibrations of the star and predict what’s going on there.

Scientists have long known that any material movement, be it on Earth or beyond, generates an accompanying wave. The rule also applies to the Sun and movement occurring on its surface produces waves.

“Waves are traveling and bouncing around inside the Sun, and if your eyes were sensitive enough they could actually see this,” Alex Young, associate director for science in the Heliophysics Science Division at NASA’s Goddard Space Flight Center, said in a statement.

The data related to these waves has been captured by SOHO and ESA for over 20 years and scientists at Stanford Experimental Physics Lab have converted that information into sounds. For instance, in this audio, we can hear the vibrations of our star.

These jiggles, as Young described, are helping scientists get an idea of what’s happening inside our Sun. Essentially, the vibrations occur at a different frequency and those frequencies can be used to look inside the sun and study a range of processes, starting from solar flares to coronal mass ejections (CME).

“We don’t have straightforward ways to look inside the Sun. We don’t have a microscope to zoom inside the Sun,” Young added. “So using a star or the Sun’s vibrations allows us to see inside of it.”

The method has helped scientists observe flowing solar material and understand the Sun like never before. The complex movement that occurs inside produces magnetic fields that move up to the surface and create sunspots, which then produce solar flares and CMEs.

“That simple sound is giving us a probe inside of a star. I think that’s a pretty cool thing,” Young said. Additional multimedia related to the sounds of the Sun is available on NASA’s SoundCloud channel and is up for display at the agency’s Goddard Visitor Center.

BREAKING NEWS: West Antarctica Mantle Plume Piercing Through Lithosphere Rising at Surprisingly Rapid Rate

The Earth is rising in one part of Antarctica at one of the fastest rates ever recorded, as ice rapidly disappears and weight is lifted off the surface, a new international study has found.

The findings, reported in the scientific journal Science, have surprising and positive implications for the survival of the West Antarctic Ice Sheet (WAIS), which scientists had previously thought could be doomed because of the effects of climate change.

The unexpectedly fast rate of the rising Earth may markedly increase the stability of the ice sheet against catastrophic collapse due to ice loss, scientists say. In other words, due to the natural cyclical events of geophysics correction, the West Antarctic mantle plume has increased its activity bringing viscous rocks closer to the surface.

Moreover, the rapid rise of the Earth in this area also affects gravity measurements, which implies that up to 10 percent more ice has disappeared in this part of Antarctica than previously assumed.

Researchers led by scientists at The Ohio State University used a series of six GPS stations (part of the POLENET-ANET array) attached to bedrock around the Amundsen Sea Embayment to measure its rise in response to thinning ice.

The “uplift rate” was measured at up to 41 millimeters (1.6 inches) a year, said Terry Wilson, one of the leaders of the study and a professor emeritus of Earth sciences at Ohio State.

In contrast, places like Iceland and Alaska, which have what are considered rapid uplift rates, generally are measured rising 20 to 30 millimeters a year. “The rate of uplift we found is unusual and very surprising. It’s a game changer,” Wilson said.

I would suggest events such as this is a continued sign of a geomagnetic shift. In these ‘late/early’ stage, magnetic north will bounce around for a few decades – perhaps dropping close to the equator – then in the laten years, perhaps 50 years from now, a full flip could occur.

And it is only going to get faster. The researchers estimate that in 100 years, uplift rates at the GPS sites will be 2.5 to 3.5 times more rapid than currently observed.

“These results provide an important contribution to our understanding of the dynamics of the Earth’s bedrock, along with the thinning of ice in Antarctica. The large amount of water stored in Antarctica has implications for the whole planet,” said lead study author Valentina R. Barletta, who started this work at Ohio State and now is a postdoctoral researcher at the National Space Institute (DTU Space) at the Technical University of Denmark.

While modeling studies have shown that bedrock uplift could theoretically protect WAIS from collapse, it was believed that the process would take too long to have practical effects.

“We previously thought uplift would occur over thousands of years at a very slow rate, not enough to have a stabilizing effect on the ice sheet. Our results suggest the stabilizing effect may only take decades,” Wilson said.

Wilson said the rapid rise of the bedrock in this part of Antarctica suggests the geology underneath Antarctica is different from what scientists had previously believed.

Underneath the solid upper layer of Earth is a hotter and more fluid layer of rock called the mantle. Exactly how hot and fluid the mantle is varies across the planet.

The rapid uplift around the Amundsen Sea Embayment suggests the mantle in this area is hotter and more fluid (or, as scientists say, it has lower viscosity) than expected, according to Barletta.

Barletta ran a variety of computer models using scenarios of ice loss through time in the area to explain how such rapid uplift could be occurring today.

The results of Barletta’s models showed that the GPS findings today could best be explained by having a low-viscosity mantle, Wilson said.

These new measurements of Glacial Isostatic Adjustment (GIA), the scientific term for uplift due to ice sheet unloading, are an important part of a wider story about the fate of the Antarctic ice sheets, said Doug Kowalewski, the Antarctic Earth Sciences program director in the National Science Foundation’s Office of Polar Programs (OPP).

The problem is that much of this area of Antarctica is below sea level. Relatively warm ocean water has flowed in underneath the bottom of the ice sheet, causing thinning and moving the grounding line – where the water, ice and solid Earth meet – further inland.

Another feedback is lowering sea levels. Massive ice sheets along the ocean have their own gravitational pull and raise the sea level near them. But as the ice thins and retreats, the gravitational pull lessens and the sea level near the coast goes down.

“The lowering of the sea level, the rising of pinning points and the decrease of the inland slope due to the uplift of the bedrock are all feedbacks that can stabilize the ice sheet,” Wilson said.

__________________

Science Of Cycles Research Fund

GOAL UPDATE: We have now reached $780 towards our goal of $1,700. As with all community services, it is time to request support with our services. We are hopeful to keep our research and news services available to all who seek this knowledge.

 

Important Message From Mitch Battros and Science Of Cycles Research and News Services

Hi Folks, I need to place an urgent call to everyone due to time restraints. We are bumping up against the deadline to update our website and content. Every website which uses secure content “must” upgrade to new security standards “requiring all merchants to upgrade their security protocols to TLS 1.2, in line with the PCI mandate.”

These upgrades are to ensure your privacy remains as such…Private.

I have to admit, I have never been comfortable with having to ask for your support to maintain our free services to all who seek the knowledge SOC uniquely provides, but it is absolutely necessary.

We have now reached $385 towards our goal of $1,700. At this pace, I’m afraid we would not make the deadline. If you are one who can assist in meeting this goal today, or tomorrow, then please come forward. As with all community services, it really is you who makes the difference.

The Transport Layer Security (TLS) 1.2, is an enhanced security protocol that encrypts customer data over the Internet. This critical security upgrade requires all merchants to make the necessary protocol updates within the next few days.

Thank you, Mitch

 

NEW STUDY: Can We Protect the Brain From Cosmic Radiation?

Although this new study is focused space travel and the damage cosmic rays can impose on the human brain, it is important to reflect upon the current trend of a diminishing strength of Earth’s magnetic field allowing a significant increase of cosmic rays.

Another factor is the predicted lessening of solar cycle strengths – perhaps over the next 100 years. When there is a lower number of sunspots, there will be fewer solar storms such as solar flares, coronal mass ejections, and coronal holes. It is the stronger solar winds which deflect galactic cosmic rays. There is a considerable scientific argument which propose cosmic ray radiation is more harmful to Earth and humans than solar storm events.

As we prepare to enter a new era of space travel, we must find ways of averting health risks posed by the cosmic environment. Deep space radiation, in particular, is known to impair cognitive function. Have researchers found a way to undo that damage?

This is the eve of sending astronauts to explore deep space, colonizing and terraforming other planets, and planning for space tourism. One main threat comes from cosmic radiation, which can harm the central nervous system, altering cognitive function and leading to symptoms similar to those found in Alzheimer’s disease.

With their colonizing missions to Mars planned for as soon as the 2030s, NASA – as well as private companies interested in space travel concepts – have been looking into effective ways of protecting astronauts from the harms of radiation.

So far, researchers have focused mainly on how to enhance spacecrafts and protective outfits for outer space travelers to fend off this strong radiation. Now, however, investigators from the University of California, San Francisco – led by Susanna Rosi – have started developing a treatment that might offset the neuro-degeneration triggered by cosmic rays.

The results of their experiments, which they carried out on mouse models, are now published in the journal Scientific Reports.

_______________

Science Of Cycles Research and
News Service Fund Raiser

As with all community services, it is time to request support with our services. We are hopeful to keep our research and news services available to all who seek this knowledge.

Needless to say we are convinced what we provide on Science Of Cycles informs its readers to be best informed of what is occurring right now in the present, but as importantly, what is most likely to occur in the near future.

Cheers, Mitch

 

UPDATE: Science Of Cycles Research and News Service Fund Drive

Update: I am trying to place a ‘goal bar’ so everyone can view the progress of support. However, I am having a bit of trouble finding a script that my platform will allow. So for now I will have to write it out.

Sample with real-time figures as of now. Received $220 and Goal $1,700

New security standards are being implemented as of now with a deadline at the end of this month (June 30th 2018) and is mandatory along all platforms. Upgrading security processes are compulsory to maintain our services.

There does appear to be a very serious concern of foreign sabotage. It would seem the famous statement: “The Russians are coming, the Russians are coming” made in 1949 by then United States Secretary of Defense James Forrestal, has now be substantiated as a fact.

As with all community services, it is time to request support with our services. We are hopeful to keep our research and news services available to all who seek this knowledge.

Needless to say we are convinced what we provide on Science Of Cycles informs its readers to be best informed of what is occurring right now in the present, but as importantly, what is most likely to occur in the near future.

Thank you in advance for all of you who seek and appreciate this knowledge, and for all future seekers who come to understand our products importance.                Cheers, Mitch

 

JUST IN: The True Power of the Solar Wind

New research from the Vienna University of Technology, now show that previous models of our solar system which is continuously being bombarded by particles hurled away from the Sun, is incomplete. The effects of solar wind bombardment are in some cases much more drastic than previously thought. These findings are important for the ESA mission BepiColombo, Europe’s first Mercury mission. The results have now been published in the planetology journal ‘Icarus’.

“The solar wind consists of charged particles — mainly hydrogen and helium ions, but heavier atoms up to iron also play a role,” explains Prof. Friedrich Aumayr from the Institute of Applied Physics at TU Wien. These particles hit the surface rocks at a speed of 400 to 800 km per second and the impact can eject numerous other atoms. These particles can rise high before they fall back to the surface, creating an “exosphere” around the Moon or Mercury — an extremely thin atmosphere of atoms sputtered from the surface rocks by solar wind bombardment.

This exosphere is of great interest for space research because its composition allows scientists to deduce the chemical composition of the rock surface — and it is much easier to analyze the exosphere than to land a spacecraft on the surface.

However, this requires a precise understanding of the effects of the solar wind on the rock surfaces, and this is precisely where decisive gaps in knowledge still exist. Therefore, the TU Wien investigated the effect of ion bombardment on wollastonite, a typical moon rock. “Up to now it was assumed that the kinetic energy of the fast particles is primarily responsible for atomization of the rock surface,” says Paul Szabo, PhD student in Friedrich Aumayr’s team and first author of the current publication. “But this is only half the truth: we were able to show that the high electrical charge of the particles plays a decisive role. It is the reason that the particles on the surface can do much more damage than previously thought.”

When the particles of the solar wind are multiply charged, i.e. when they lack several electrons, they carry a large amount of energy which is released in a flash on impact. “If this is not taken into account, the effects of the solar wind on various rocks are misjudged,” says Paul Szabo. Therefore, it is not possible to draw exact conclusions about the surface rocks with an incorrect model from the composition of the exosphere.

Protons make up by far the largest part of the solar wind, and so it was previously thought that they had the strongest influence on the rock. But as it turns out, helium actually plays the main role because, unlike protons, it can be charged twice as positively. And the contribution of heavier ions with an even greater electrical charge must not be neglected either. A cooperation of different research groups was necessary for these findings: High-precision measurements were carried out with a specifically developed microbalance at the Institute of Applied Physics.

At the Vienna Scientific Cluster VSC-3 complex computer simulations with codes developed for nuclear fusion research were carried out in order to be able to interpret the results correctly. The Analytical Instrumentation Center and the Institute for Chemical Technologies and Analytics of the TU Vienna also made important contributions.